matrix.h File Reference
Description
A NxM-dimensional matrix class template of fixed dimensions with supporting functions. See Matrix Class.
Code Example
matrix.h
//*****************************************************************************
// Copyright 1986, 2016 NVIDIA Corporation. All rights reserved.
//*****************************************************************************
//*****************************************************************************
#ifndef MI_MATH_MATRIX_H
#define MI_MATH_MATRIX_H
#include <mi/base/types.h>
#include <mi/math/assert.h>
#include <mi/math/function.h>
#include <mi/math/vector.h>
namespace mi {
namespace math {
//------- POD struct that provides storage for matrix elements --------
template <typename T, Size ROW, Size COL>
struct Matrix_struct
{
T elements[ROW*COL];
};
template <typename T> struct Matrix_struct<T,1,1>
{
T xx;
};
template <typename T> struct Matrix_struct<T,2,1>
{
T xx;
T yx;
};
template <typename T> struct Matrix_struct<T,3,1>
{
T xx;
T yx;
T zx;
};
template <typename T> struct Matrix_struct<T,4,1>
{
T xx;
T yx;
T zx;
T wx;
};
template <typename T> struct Matrix_struct<T,1,2>
{
T xx;
T xy;
};
template <typename T> struct Matrix_struct<T,2,2>
{
T xx;
T xy;
T yx;
T yy;
};
template <typename T> struct Matrix_struct<T,3,2>
{
T xx;
T xy;
T yx;
T yy;
T zx;
T zy;
};
template <typename T> struct Matrix_struct<T,4,2>
{
T xx;
T xy;
T yx;
T yy;
T zx;
T zy;
T wx;
T wy;
};
template <typename T> struct Matrix_struct<T,1,3>
{
T xx;
T xy;
T xz;
};
template <typename T> struct Matrix_struct<T,2,3>
{
T xx;
T xy;
T xz;
T yx;
T yy;
T yz;
};
template <typename T> struct Matrix_struct<T,3,3>
{
T xx;
T xy;
T xz;
T yx;
T yy;
T yz;
T zx;
T zy;
T zz;
};
template <typename T> struct Matrix_struct<T,4,3>
{
T xx;
T xy;
T xz;
T yx;
T yy;
T yz;
T zx;
T zy;
T zz;
T wx;
T wy;
T wz;
};
template <typename T> struct Matrix_struct<T,1,4>
{
T xx;
T xy;
T xz;
T xw;
};
template <typename T> struct Matrix_struct<T,2,4>
{
T xx;
T xy;
T xz;
T xw;
T yx;
T yy;
T yz;
T yw;
};
template <typename T> struct Matrix_struct<T,3,4>
{
T xx;
T xy;
T xz;
T xw;
T yx;
T yy;
T yz;
T yw;
T zx;
T zy;
T zz;
T zw;
};
template <typename T> struct Matrix_struct<T,4,4>
{
T xx;
T xy;
T xz;
T xw;
T yx;
T yy;
T yz;
T yw;
T zx;
T zy;
T zz;
T zw;
T wx;
T wy;
T wz;
T ww;
};
//------ Indirect access to matrix storage base ptr to keep Matrix_struct a POD --
// Helper class to determine the matrix struct base pointer of the generic
// #Matrix_struct (\c specialized==\c false).
template <typename T, class Matrix, bool specialized>
struct Matrix_struct_get_base_pointer
{
static inline T* get_base_ptr( Matrix& m) { return m.elements; }
static inline const T* get_base_ptr( const Matrix& m) { return m.elements; }
};
// Specialization of helper class to determine the matrix struct base pointer
// of a specialized #Matrix_struct (\c specialized==\c true).
template <typename T, class Matrix>
struct Matrix_struct_get_base_pointer<T,Matrix,true>
{
static inline T* get_base_ptr( Matrix& m) { return &m.xx; }
static inline const T* get_base_ptr( const Matrix& m) { return &m.xx; }
};
template <typename T, Size ROW, Size COL>
inline T* matrix_base_ptr( Matrix_struct< T, ROW, COL>& mat)
{
return Matrix_struct_get_base_pointer<T,Matrix_struct<T,ROW,COL>,
(ROW<=4 && COL<=4)>::get_base_ptr( mat);
}
template <typename T, Size ROW, Size COL>
inline const T* matrix_base_ptr( const Matrix_struct< T, ROW, COL>& mat)
{
return Matrix_struct_get_base_pointer<T,Matrix_struct<T,ROW,COL>,
(ROW<=4 && COL<=4)>::get_base_ptr( mat);
}
// end group mi_math_matrix_struct
template <typename T, Size ROW, Size COL>
class Matrix : public Matrix_struct<T,ROW,COL>
{
public:
typedef Matrix_struct< T, ROW, COL>
Pod_type;
typedef Matrix_struct< T, ROW, COL>
storage_type;
typedef T value_type;
typedef Size
size_type;
typedef Difference
difference_type;
typedef T * pointer;
typedef const T * const_pointer;
typedef T & reference;
typedef const T & const_reference;
typedef Vector< T, COL>
Row_vector;
typedef Vector< T, ROW>
Column_vector;
static const Size
ROWS = ROW;
static const Size
COLUMNS = COL;
static const Size
SIZE = ROW*COL;
static inline Size
size() { return SIZE; }
static inline Size
max_size() { return SIZE; }
enum Transposed_copy_tag {
TRANSPOSED_COPY_TAG
};
inline T * begin() { return mi::math::matrix_base_ptr( *this); }
inline T const * begin() const { return mi::math::matrix_base_ptr( *this); }
inline T * end() { return begin() + SIZE; }
inline T const * end() const { return begin() + SIZE; }
inline Row_vector & operator[](Size row)
{
mi_math_assert_msg( row < ROW, "precondition");
return reinterpret_cast<Row_vector&>(begin()[row * COL]);
}
inline const Row_vector & operator[](Size row) const
{
mi_math_assert_msg( row < ROW, "precondition");
return reinterpret_cast<const Row_vector&>(begin()[row * COL]);
}
inline Matrix() { }
inline Matrix( const Matrix_struct< T, ROW, COL>& other)
{
for( Size i(0u); i < ROW * COL; ++i)
begin()[i] = mi::math::matrix_base_ptr( other)[i];
}
explicit inline Matrix( T diag)
{
for( Size i(0u); i < SIZE; ++i)
begin()[i] = T(0);
const Size MIN_DIM = (ROW < COL) ? ROW : COL;
for( Size k(0u); k < MIN_DIM; ++k)
begin()[k * COL + k] = diag;
}
template <typename Iterator>
inline Matrix( From_iterator_tag, Iterator p)
{
for( Size i(0u); i < SIZE; ++i, ++p)
begin()[i] = *p;
}
template <typename T2>
inline explicit Matrix( T2 const (& array)[SIZE])
{
for( Size i(0u); i < SIZE; ++i)
begin()[i] = array[i];
}
template <typename T2>
inline explicit Matrix( const Matrix< T2, ROW, COL>& other)
{
for( Size i(0u); i < SIZE; ++i)
begin()[i] = T(other.begin()[i]);
}
inline Matrix(
Transposed_copy_tag,
const Matrix< T, COL, ROW>& other)
{
for( Size i(0u); i < ROW; ++i)
for( Size j(0u); j < COL; ++j)
begin()[i * COL + j] = other.begin()[j * ROW + i];
}
template <typename T2>
inline Matrix(
Transposed_copy_tag,
const Matrix< T2, COL, ROW>& other)
{
for( Size i(0u); i < ROW; ++i)
for( Size j(0u); j < COL; ++j)
begin()[i * COL + j] = T(other.begin()[j * ROW + i]);
}
inline explicit Matrix(
const Row_vector& v0)
{
mi_static_assert( ROW == 1);
(*this)[0] = v0;
}
inline Matrix(
const Row_vector& v0,
const Row_vector& v1)
{
mi_static_assert( ROW == 2);
(*this)[0] = v0;
(*this)[1] = v1;
}
inline Matrix(
const Row_vector& v0,
const Row_vector& v1,
const Row_vector& v2)
{
mi_static_assert( ROW == 3);
(*this)[0] = v0;
(*this)[1] = v1;
(*this)[2] = v2;
}
inline Matrix(
const Row_vector& v0,
const Row_vector& v1,
const Row_vector& v2,
const Row_vector& v3)
{
mi_static_assert( ROW == 4);
(*this)[0] = v0;
(*this)[1] = v1;
(*this)[2] = v2;
(*this)[3] = v3;
}
inline Matrix( T m0, T m1)
{
mi_static_assert( SIZE == 2);
begin()[0] = m0; begin()[1] = m1;
}
inline Matrix( T m0, T m1, T m2)
{
mi_static_assert( SIZE == 3);
begin()[0] = m0; begin()[1] = m1; begin()[2] = m2;
}
inline Matrix( T m0, T m1, T m2, T m3)
{
mi_static_assert( SIZE == 4);
begin()[0] = m0; begin()[1] = m1; begin()[2] = m2; begin()[3] = m3;
}
inline Matrix( T m0, T m1, T m2, T m3, T m4, T m5)
{
mi_static_assert( SIZE == 6);
begin()[0] = m0; begin()[1] = m1; begin()[2] = m2; begin()[3] = m3;
begin()[4] = m4; begin()[5] = m5;
}
inline Matrix( T m0, T m1, T m2, T m3, T m4, T m5, T m6, T m7)
{
mi_static_assert( SIZE == 8);
begin()[0] = m0; begin()[1] = m1; begin()[2] = m2; begin()[3] = m3;
begin()[4] = m4; begin()[5] = m5; begin()[6] = m6; begin()[7] = m7;
}
inline Matrix( T m0, T m1, T m2, T m3, T m4, T m5, T m6, T m7, T m8)
{
mi_static_assert( SIZE == 9);
begin()[0] = m0; begin()[1] = m1; begin()[2] = m2; begin()[3] = m3;
begin()[4] = m4; begin()[5] = m5; begin()[6] = m6; begin()[7] = m7;
begin()[8] = m8;
}
inline Matrix(
T m0, T m1, T m2, T m3,
T m4, T m5, T m6, T m7,
T m8, T m9, T m10, T m11)
{
mi_static_assert( SIZE == 12);
begin()[0] = m0; begin()[1] = m1; begin()[2] = m2; begin()[3] = m3;
begin()[4] = m4; begin()[5] = m5; begin()[6] = m6; begin()[7] = m7;
begin()[8] = m8; begin()[9] = m9; begin()[10] = m10; begin()[11] = m11;
}
inline Matrix(
T m0, T m1, T m2, T m3,
T m4, T m5, T m6, T m7,
T m8, T m9, T m10, T m11,
T m12, T m13, T m14, T m15)
{
mi_static_assert( SIZE == 16);
begin()[0] = m0; begin()[1] = m1; begin()[2] = m2; begin()[3] = m3;
begin()[4] = m4; begin()[5] = m5; begin()[6] = m6; begin()[7] = m7;
begin()[8] = m8; begin()[9] = m9; begin()[10] = m10; begin()[11] = m11;
begin()[12] = m12; begin()[13] = m13; begin()[14] = m14; begin()[15] = m15;
}
inline Matrix& operator=( const Matrix& other)
{
Matrix_struct< T, ROW, COL>::operator=( other);
return *this;
}
inline T& operator()( Size row, Size col)
{
mi_math_assert_msg( row < ROW, "precondition");
mi_math_assert_msg( col < COL, "precondition");
return begin()[row * COL + col];
}
inline const T& operator()( Size row, Size col) const
{
mi_math_assert_msg( row < ROW, "precondition");
mi_math_assert_msg( col < COL, "precondition");
return begin()[row * COL + col];
}
inline T get( Size i) const
{
mi_math_assert_msg( i < (ROW*COL), "precondition");
return begin()[i];
}
inline T get( Size row, Size col) const
{
mi_math_assert_msg( row < ROW, "precondition");
mi_math_assert_msg( col < COL, "precondition");
return begin()[row * COL + col];
}
inline void set( Size i, T value)
{
mi_math_assert_msg( i < (ROW*COL), "precondition");
begin()[i] = value;
}
inline void set( Size row, Size col, T value)
{
mi_math_assert_msg( row < ROW, "precondition");
mi_math_assert_msg( col < COL, "precondition");
begin()[row * COL + col] = value;
}
inline T det33() const
{
mi_static_assert( (ROW==3 || ROW==4) && (COL==3 || COL==4) );
return this->xx * this->yy * this->zz
+ this->xy * this->yz * this->zx
+ this->xz * this->yx * this->zy
- this->xx * this->zy * this->yz
- this->xy * this->zz * this->yx
- this->xz * this->zx * this->yy;
}
inline bool invert();
inline void transpose()
{
mi_static_assert( ROW==COL);
for( Size i=0; i < ROW-1; ++i) {
for( Size j=i+1; j < COL; ++j) {
T tmp = get(i,j);
set(i,j, get(j,i));
set(j,i, tmp);
}
}
}
inline void translate( T x, T y, T z)
{
this->wx += x;
this->wy += y;
this->wz += z;
}
inline void translate( const Vector< Float32, 3>& vector)
{
this->wx += T( vector.x);
this->wy += T( vector.y);
this->wz += T( vector.z);
}
inline void translate( const Vector< Float64, 3>& vector)
{
this->wx += T( vector.x);
this->wy += T( vector.y);
this->wz += T( vector.z);
}
inline void set_translation( T dx, T dy, T dz)
{
this->wx = dx;
this->wy = dy;
this->wz = dz;
}
inline void set_translation( const Vector< Float32, 3>& vector)
{
this->wx = T( vector.x);
this->wy = T( vector.y);
this->wz = T( vector.z);
}
inline void set_translation( const Vector< Float64, 3>& vector)
{
this->wx = T( vector.x);
this->wy = T( vector.y);
this->wz = T( vector.z);
}
inline void rotate( T xangle, T yangle, T zangle)
{
Matrix< T, 4, 4> tmp( T( 1));
tmp.set_rotation( xangle, yangle, zangle);
(*this) *= tmp;
}
inline void rotate( const Vector< Float32, 3>& angles)
{
Matrix< T, 4, 4> tmp( T( 1));
tmp.set_rotation( T( angles.x), T( angles.y), T( angles.z));
(*this) *= tmp;
}
inline void rotate( const Vector< Float64, 3>& angles)
{
Matrix< T, 4, 4> tmp( T( 1));
tmp.set_rotation( T( angles.x), T( angles.y), T( angles.z));
(*this) *= tmp;
}
inline void set_rotation( T x_angle, T y_angle, T z_angle);
inline void set_rotation( const Vector< Float32, 3>& angles)
{
set_rotation( T( angles.x), T( angles.y), T( angles.z));
}
inline void set_rotation( const Vector< Float64, 3>& angles)
{
set_rotation( T( angles.x), T( angles.y), T( angles.z));
}
inline void set_rotation( const Vector< Float32, 3>& axis, Float64 angle);
inline void set_rotation( const Vector< Float64, 3>& axis, Float64 angle);
inline void lookat(
const Vector< Float32, 3>& position,
const Vector< Float32, 3>& target,
const Vector< Float32, 3>& up);
inline void lookat(
const Vector< Float64, 3>& position,
const Vector< Float64, 3>& target,
const Vector< Float64, 3>& up);
};
//------ Free comparison operators ==, !=, <, <=, >, >= for matrices -----------
template <typename T, Size ROW, Size COL>
inline bool operator==(
const Matrix< T, ROW, COL>& lhs,
const Matrix< T, ROW, COL>& rhs)
{
return is_equal( lhs, rhs);
}
template <typename T, Size ROW, Size COL>
inline bool operator!=(
const Matrix< T, ROW, COL>& lhs,
const Matrix< T, ROW, COL>& rhs)
{
return is_not_equal( lhs, rhs);
}
template <typename T, Size ROW, Size COL>
inline bool operator< (
const Matrix< T, ROW, COL>& lhs,
const Matrix< T, ROW, COL>& rhs)
{
return lexicographically_less( lhs, rhs);
}
template <typename T, Size ROW, Size COL>
inline bool operator< =(
const Matrix< T, ROW, COL>& lhs,
const Matrix< T, ROW, COL>& rhs)
{
return lexicographically_less_or_equal( lhs, rhs);
}
template <typename T, Size ROW, Size COL>
inline bool operator>(
const Matrix< T, ROW, COL>& lhs,
const Matrix< T, ROW, COL>& rhs)
{
return lexicographically_greater( lhs, rhs);
}
template <typename T, Size ROW, Size COL>
inline bool operator>=(
const Matrix< T, ROW, COL>& lhs,
const Matrix< T, ROW, COL>& rhs)
{
return lexicographically_greater_or_equal( lhs, rhs);
}
//------ Operator declarations for Matrix -------------------------------------
template <typename T, Size ROW, Size COL>
Matrix<T,ROW,COL>& operator+=( Matrix<T,ROW,COL>& lhs, const Matrix<T,ROW,COL>& rhs);
template <typename T, Size ROW, Size COL>
Matrix<T,ROW,COL>& operator-=( Matrix<T,ROW,COL>& lhs, const Matrix<T,ROW,COL>& rhs);
template <typename T, Size ROW, Size COL>
inline Matrix< T, ROW, COL>
operator+(
const Matrix< T, ROW, COL>& lhs,
const Matrix< T, ROW, COL>& rhs)
{
Matrix< T, ROW, COL> temp( lhs);
temp += rhs;
return temp;
}
template <typename T, Size ROW, Size COL>
inline Matrix< T, ROW, COL>
operator-(
const Matrix< T, ROW, COL>& lhs,
const Matrix< T, ROW, COL>& rhs)
{
Matrix< T, ROW, COL> temp( lhs);
temp -= rhs;
return temp;
}
template <typename T, Size ROW, Size COL>
inline Matrix< T, ROW, COL>
operator-(
const Matrix< T, ROW, COL>& mat)
{
Matrix< T, ROW, COL> temp;
for( Size i(0u); i < (ROW*COL); ++i)
temp.begin()[i] = -mat.get(i);
return temp;
}
template <typename T, Size ROW, Size COL>
inline Matrix< T, ROW, COL>& operator*=(
Matrix< T, ROW, COL>& lhs,
const Matrix< T, COL, COL>& rhs)
{
// There are more efficient ways of implementing this. Its a default solution. Specializations
// exist below.
Matrix< T, ROW, COL> old( lhs);
for( Size rrow = 0; rrow < ROW; ++rrow) {
for( Size rcol = 0; rcol < COL; ++rcol) {
lhs( rrow, rcol) = T(0);
for( Size k = 0; k < COL; ++k)
lhs( rrow, rcol) += old( rrow, k) * rhs( k, rcol);
}
}
return lhs;
}
template <typename T, Size ROW1, Size COL1, Size ROW2, Size COL2>
inline Matrix< T, ROW1, COL2>
operator*(
const Matrix< T, ROW1, COL1>& lhs,
const Matrix< T, ROW2, COL2>& rhs)
{
// There are more efficient ways of implementing this. Its a default solution. Specializations
// exist below.
mi_static_assert( COL1 == ROW2);
Matrix< T, ROW1, COL2> result;
for( Size rrow = 0; rrow < ROW1; ++rrow) {
for( Size rcol = 0; rcol < COL2; ++rcol) {
result( rrow, rcol) = T(0);
for( Size k = 0; k < COL1; ++k)
result( rrow, rcol) += lhs( rrow, k) * rhs( k, rcol);
}
}
return result;
}
template <typename T, Size ROW, Size COL, Size DIM>
inline Vector< T, ROW>
operator*(
const Matrix< T, ROW, COL>& mat,
const Vector< T, DIM>& vec)
{
mi_static_assert( COL == DIM);
Vector< T, ROW> result;
for( Size row = 0; row < ROW; ++row) {
result[row] = T(0);
for( Size col = 0; col < COL; ++col)
result[row] += mat( row, col) * vec[col];
}
return result;
}
template <Size DIM, typename T, Size ROW, Size COL>
inline Vector< T, COL>
operator*(
const Vector< T, DIM>& vec,
const Matrix< T, ROW, COL>& mat)
{
mi_static_assert( DIM == ROW);
Vector< T, COL> result;
for( Size col = 0; col < COL; ++col) {
result[col] = T(0);
for( Size row = 0; row < ROW; ++row)
result[col] += mat( row, col) * vec[row];
}
return result;
}
template <typename T, Size ROW, Size COL>
inline Matrix< T, ROW, COL>& operator*=( Matrix< T, ROW, COL>& mat, T factor)
{
for( Size i=0; i < (ROW*COL); ++i)
mat.begin()[i] *= factor;
return mat;
}
template <typename T, Size ROW, Size COL>
inline Matrix< T, ROW, COL>
operator*( const Matrix< T, ROW, COL>& mat, T factor)
{
Matrix< T, ROW, COL> temp( mat);
temp *= factor;
return temp;
}
template <typename T, Size ROW, Size COL>
inline Matrix< T, ROW, COL>
operator*( T factor, const Matrix< T, ROW, COL>& mat)
{
Matrix< T, ROW, COL> temp( mat);
temp *= factor; // * on T should be commutative (IEEE-754)
return temp;
}
//------ Free Functions for Matrix --------------------------------------------
template <Size NEW_ROW, Size NEW_COL, typename T, Size ROW, Size COL>
inline Matrix< T, NEW_ROW, NEW_COL>
sub_matrix(
const Matrix< T, ROW, COL>& mat)
{
mi_static_assert( NEW_ROW <= ROW);
mi_static_assert( NEW_COL <= COL);
Matrix< T, NEW_ROW, NEW_COL> result;
for( Size i=0; i < NEW_ROW; ++i)
for( Size j=0; j < NEW_COL; ++j)
result( i, j) = mat( i, j);
return result;
}
template <typename T, Size ROW, Size COL>
inline Matrix< T, COL, ROW>
transpose(
const Matrix< T, ROW, COL>& mat)
{
Matrix< T, COL, ROW> result;
for( Size i=0; i < ROW; ++i)
for( Size j=0; j < COL; ++j)
result( j, i) = mat( i, j);
return result;
}
template <typename T, typename U>
inline U transform_point(
const Matrix< T, 4, 4>& mat,
const U& point)
{
const T w = T(mat.xw * point + mat.ww);
if( w == T(0) || w == T(1))
return U(mat.xx * point + mat.wx);
else
return U((mat.xx * point + mat.wx) / w);
}
template <typename T, typename U>
inline Vector< U, 2>
transform_point(
const Matrix< T, 4, 4>& mat,
const Vector< U, 2>& point)
{
T w = T(mat.xw * point.x + mat.yw * point.y + mat.ww);
if( w == T(0) || w == T(1))
return Vector< U, 2>(
U(mat.xx * point.x + mat.yx * point.y + mat.wx),
U(mat.xy * point.x + mat.yy * point.y + mat.wy));
else {
w = T(1)/w; // optimization
return Vector< U, 2>(
U((mat.xx * point.x + mat.yx * point.y + mat.wx) * w),
U((mat.xy * point.x + mat.yy * point.y + mat.wy) * w));
}
}
template <typename T, typename U>
inline Vector< U, 3>
transform_point(
const Matrix< T, 4, 4>& mat,
const Vector< U, 3>& point)
{
T w = T(mat.xw * point.x + mat.yw * point.y + mat.zw * point.z + mat.ww);
if( w == T(0) || w == T(1)) // avoids temporary and division
return Vector< U, 3>(
U(mat.xx * point.x + mat.yx * point.y + mat.zx * point.z + mat.wx),
U(mat.xy * point.x + mat.yy * point.y + mat.zy * point.z + mat.wy),
U(mat.xz * point.x + mat.yz * point.y + mat.zz * point.z + mat.wz));
else {
w = T(1)/w; // optimization
return Vector< U, 3>(
U((mat.xx * point.x + mat.yx * point.y + mat.zx * point.z + mat.wx) * w),
U((mat.xy * point.x + mat.yy * point.y + mat.zy * point.z + mat.wy) * w),
U((mat.xz * point.x + mat.yz * point.y + mat.zz * point.z + mat.wz) * w));
}
}
template <typename T, typename U>
inline Vector< U, 4>
transform_point(
const Matrix< T, 4, 4>& mat,
const Vector< U, 4>& point)
{
return Vector< U, 4>(
U(mat.xx * point.x + mat.yx * point.y + mat.zx * point.z + mat.wx * point.w),
U(mat.xy * point.x + mat.yy * point.y + mat.zy * point.z + mat.wy * point.w),
U(mat.xz * point.x + mat.yz * point.y + mat.zz * point.z + mat.wz * point.w),
U(mat.xw * point.x + mat.yw * point.y + mat.zw * point.z + mat.ww * point.w));
}
template <typename T, typename U>
inline U transform_vector(
const Matrix< T, 4, 4>& mat,
const U& vector)
{
return U(mat.xx * vector);
}
template <typename T, typename U>
inline Vector< U, 2>
transform_vector(
const Matrix< T, 4, 4>& mat,
const Vector< U, 2>& vector)
{
return Vector< U, 2>(
U(mat.xx * vector.x + mat.yx * vector.y),
U(mat.xy * vector.x + mat.yy * vector.y));
}
template <typename T, typename U>
inline Vector< U, 3>
transform_vector(
const Matrix< T, 4, 4>& mat,
const Vector< U, 3>& vector)
{
return Vector< U, 3>(
U(mat.xx * vector.x + mat.yx * vector.y + mat.zx * vector.z),
U(mat.xy * vector.x + mat.yy * vector.y + mat.zy * vector.z),
U(mat.xz * vector.x + mat.yz * vector.y + mat.zz * vector.z));
}
template <typename T, typename U>
inline Vector< U, 3>
transform_normal_inv(
const Matrix< T, 4, 4>& inv_mat,
const Vector< U, 3>& normal)
{
return Vector< U, 3>(
U(inv_mat.xx * normal.x + inv_mat.xy * normal.y + inv_mat.xz * normal.z),
U(inv_mat.yx * normal.x + inv_mat.yy * normal.y + inv_mat.yz * normal.z),
U(inv_mat.zx * normal.x + inv_mat.zy * normal.y + inv_mat.zz * normal.z));
}
template <typename T, typename U>
inline Vector< U, 3>
transform_normal(
const Matrix< T, 4, 4>& mat,
const Vector< U, 3>& normal)
{
Matrix< T, 3, 3> sub_mat( mat.xx, mat.xy, mat.xz,
mat.yx, mat.yy, mat.yz,
mat.zx, mat.zy, mat.zz);
bool inverted = sub_mat.invert();
if( !inverted)
return normal;
return Vector< U, 3>(
U(sub_mat.xx * normal.x + sub_mat.xy * normal.y + sub_mat.xz * normal.z),
U(sub_mat.yx * normal.x + sub_mat.yy * normal.y + sub_mat.yz * normal.z),
U(sub_mat.zx * normal.x + sub_mat.zy * normal.y + sub_mat.zz * normal.z));
}
//------ Definitions of non-inline function -----------------------------------
template <typename T, Size ROW, Size COL>
Matrix< T, ROW, COL>& operator+=(
Matrix< T, ROW, COL>& lhs,
const Matrix< T, ROW, COL>& rhs)
{
for( Size i=0; i < ROW*COL; ++i)
lhs.begin()[i] += rhs.get(i);
return lhs;
}
template <typename T, Size ROW, Size COL>
Matrix< T, ROW, COL>& operator-=(
Matrix< T, ROW, COL>& lhs,
const Matrix< T, ROW, COL>& rhs)
{
for( Size i=0; i < ROW*COL; ++i)
lhs.begin()[i] -= rhs.get(i);
return lhs;
}
#ifndef MI_FOR_DOXYGEN_ONLY
template <typename T, Size ROW, Size COL>
inline void Matrix< T, ROW, COL>::set_rotation( T xangle, T yangle, T zangle)
{
mi_static_assert( COL == 4 && ROW == 4);
T tsx, tsy, tsz; // sine of [xyz]_angle
T tcx, tcy, tcz; // cosine of [xyz]_angle
T tmp;
const T min_angle = T(0.00024f);
if( abs( xangle) > min_angle) {
tsx = sin( xangle);
tcx = cos( xangle);
} else {
tsx = xangle;
tcx = T(1);
}
if( abs( yangle) > min_angle) {
tsy = sin( yangle);
tcy = cos( yangle);
} else {
tsy = yangle;
tcy = T(1);
}
if( abs(zangle) > min_angle) {
tsz = sin( zangle);
tcz = cos( zangle);
} else {
tsz = T(zangle);
tcz = T(1);
}
this->xx = tcy * tcz;
this->xy = tcy * tsz;
this->xz = -tsy;
tmp = tsx * tsy;
this->yx = tmp * tcz - tcx * tsz;
this->yy = tmp * tsz + tcx * tcz;
this->yz = tsx * tcy;
tmp = tcx * tsy;
this->zx = tmp * tcz + tsx * tsz;
this->zy = tmp * tsz - tsx * tcz;
this->zz = tcx * tcy;
}
template <typename T, Size ROW, Size COL>
inline void Matrix<T,ROW,COL>::set_rotation( const Vector<Float32,3>& axis_v, Float64 angle)
{
mi_static_assert( COL == 4 && ROW == 4);
Vector<T,3> axis( axis_v);
const T min_angle = T(0.00024f);
if( abs( T(angle)) < min_angle) {
T xa = axis.x * T(angle);
T ya = axis.y * T(angle);
T za = axis.z * T(angle);
this->xx = T(1);
this->xy = za;
this->xz = -ya;
this->xw = T(0);
this->yx = za;
this->yy = T(1);
this->yz = xa;
this->yw = T(0);
this->zx = -ya;
this->zy = -xa;
this->zz = T(1);
this->zw = T(0);
} else {
T s = sin( T(angle));
T c = cos( T(angle));
T t = T(1) - c;
T tmp;
tmp = t * T(axis.x);
this->xx = tmp * T(axis.x) + c;
this->xy = tmp * T(axis.y) + s * T(axis.z);
this->xz = tmp * T(axis.z) - s * T(axis.y);
this->xw = T(0);
tmp = t * T(axis.y);
this->yx = tmp * T(axis.x) - s * T(axis.z);
this->yy = tmp * T(axis.y) + c;
this->yz = tmp * T(axis.z) + s * T(axis.x);
this->yw = T(0);
tmp = t * T(axis.z);
this->zx = tmp * T(axis.x) + s * T(axis.y);
this->zy = tmp * T(axis.y) - s * T(axis.x);
this->zz = tmp * T(axis.z) + c;
this->zw = T(0);
}
this->wx = this->wy = this->wz = T(0);
this->ww = T(1);
}
template <typename T, Size ROW, Size COL>
inline void Matrix<T,ROW,COL>::set_rotation( const Vector<Float64,3>& axis_v, Float64 angle)
{
mi_static_assert( COL == 4 && ROW == 4);
Vector<T,3> axis( axis_v);
const T min_angle = T(0.00024f);
if( abs(T(angle)) < min_angle) {
T xa = axis.x * T(angle);
T ya = axis.y * T(angle);
T za = axis.z * T(angle);
this->xx = T(1);
this->xy = za;
this->xz = -ya;
this->xw = T(0);
this->yx = za;
this->yy = T(1);
this->yz = xa;
this->yw = T(0);
this->zx = -ya;
this->zy = -xa;
this->zz = T(1);
this->zw = T(0);
} else {
T s = sin( T(angle));
T c = cos( T(angle));
T t = T(1) - c;
T tmp;
tmp = t * T(axis.x);
this->xx = tmp * T(axis.x) + c;
this->xy = tmp * T(axis.y) + s * T(axis.z);
this->xz = tmp * T(axis.z) - s * T(axis.y);
this->xw = T(0);
tmp = t * T(axis.y);
this->yx = tmp * T(axis.x) - s * T(axis.z);
this->yy = tmp * T(axis.y) + c;
this->yz = tmp * T(axis.z) + s * T(axis.x);
this->yw = T(0);
tmp = t * T(axis.z);
this->zx = tmp * T(axis.x) + s * T(axis.y);
this->zy = tmp * T(axis.y) - s * T(axis.x);
this->zz = tmp * T(axis.z) + c;
this->zw = T(0);
}
this->wx = this->wy = this->wz = T(0);
this->ww = T(1);
}
template <typename T, Size ROW, Size COL>
inline void Matrix<T,ROW,COL>::lookat(
const Vector<Float32,3>& position,
const Vector<Float32,3>& target,
const Vector<Float32,3>& up)
{
mi_static_assert( COL == 4 && ROW == 4);
Vector<Float32,3> xaxis, yaxis, zaxis;
// Z vector
zaxis = position - target;
zaxis.normalize();
// X vector = up cross Z
xaxis = cross( up, zaxis);
xaxis.normalize();
// Recompute Y = Z cross X
yaxis = cross( zaxis, xaxis);
yaxis.normalize();
// Build rotation matrix
Matrix<T,4,4> rot(
T(xaxis.x), T(yaxis.x), T(zaxis.x), T(0),
T(xaxis.y), T(yaxis.y), T(zaxis.y), T(0),
T(xaxis.z), T(yaxis.z), T(zaxis.z), T(0),
T(0), T(0), T(0), T(1));
// Compute the new position by multiplying the inverse position with the rotation matrix
Matrix<T,4,4> trans(
T(1), T(0), T(0), T(0),
T(0), T(1), T(0), T(0),
T(0), T(0), T(1), T(0),
T(-position.x), T(-position.y), T(-position.z), T(1));
*this = trans * rot;
}
template <typename T, Size ROW, Size COL>
inline void Matrix<T,ROW,COL>::lookat(
const Vector<Float64,3>& position,
const Vector<Float64,3>& target,
const Vector<Float64,3>& up)
{
mi_static_assert( COL == 4 && ROW == 4);
Vector<Float64,3> xaxis, yaxis, zaxis;
// Z vector
zaxis = position - target;
zaxis.normalize();
// X vector = up cross Z
xaxis = cross( up, zaxis);
xaxis.normalize();
// Recompute Y = Z cross X
yaxis = cross( zaxis, xaxis);
yaxis.normalize();
// Build rotation matrix
Matrix<T,4,4> rot(
T(xaxis.x), T(yaxis.x), T(zaxis.x), T(0),
T(xaxis.y), T(yaxis.y), T(zaxis.y), T(0),
T(xaxis.z), T(yaxis.z), T(zaxis.z), T(0),
T(0), T(0), T(0), T(1));
// Compute the new position by multiplying the inverse position with the rotation matrix
Matrix<T,4,4> trans(
T(1), T(0), T(0), T(0),
T(0), T(1), T(0), T(0),
T(0), T(0), T(1), T(0),
T(-position.x), T(-position.y), T(-position.z), T(1));
*this = trans * rot;
}
//------ Definition and helper for matrix inversion ---------------------------
// Matrix inversion class, specialized for symmetric matrices and low dimensions
template <class T, Size ROW, Size COL>
class Matrix_inverter
{
public:
typedef math::Matrix<T,ROW,COL> Matrix;
// Inverts the matrix \c M if possible and returns \c true.
//
// If the matrix cannot be inverted or if \c ROW != \c COL, this function returns \c false.
static inline bool invert( Matrix& /* M */) { return false; }
};
// Matrix inversion class, specialization for symmetric matrices
template <class T, Size DIM>
class Matrix_inverter<T,DIM,DIM>
{
public:
typedef math::Matrix<T,DIM,DIM> Matrix;
typedef math::Vector<T,DIM> Vector;
typedef math::Vector<Size,DIM> Index_vector;
// LU decomposition of matrix lu in place.
//
// Returns \c false if matrix cannot be decomposed, for example, if it is not invertible, and \c
// true otherwise. Returns also a row permutation in indx.
static bool lu_decomposition(
Matrix& lu, // matrix to decompose, modified in place
Index_vector& indx); // row permutation info indx[4]
// Solves the equation lu * x = b for x. lu and indx are the results of lu_decomposition. The
// solution is returned in b.
static void lu_backsubstitution(
const Matrix& lu, // LU decomposed matrix
const Index_vector& indx, // permutation vector
Vector& b); // right hand side vector b, modified in place
static bool invert( Matrix& mat);
};
template <class T, Size DIM>
bool Matrix_inverter<T,DIM,DIM>::lu_decomposition(
Matrix& lu,
Index_vector& indx)
{
Vector vv; // implicit scaling of each row
for( Size i = 0; i < DIM; i++) { // get implicit scaling
T big = T(0);
for( Size j = 0; j < DIM; j++) {
T temp = abs(lu.get(i,j));
if( temp > big)
big = temp;
}
if( big == T(0))
return false;
vv[i] = T(1) / big; // save scaling
}
//
// loop over columns of Crout's method
//
Size imax = 0;
for( Size j = 0; j < DIM; j++) {
for( Size i = 0; i < j; i++) {
T sum = lu.get(i,j);
for( Size k = 0; k < i; k++)
sum -= lu.get(i,k) * lu.get(k,j);
lu.set(i, j, sum);
}
T big = 0; // init for pivot search
for( Size i = j; i < DIM; i++) {
T sum = lu.get(i,j);
for( Size k = 0; k < j; k++)
sum -= lu.get(i,k) * lu.get(k,j);
lu.set(i, j, sum);
T dum = vv[i] * abs(sum);
if( dum >= big) { // pivot good?
big = dum;
imax = i;
}
}
if( j != imax) { // interchange rows
for( Size k = 0; k < DIM; k++) {
T dum = lu.get(imax,k);
lu.set(imax, k, lu.get(j,k));
lu.set(j, k, dum);
}
vv[imax] = vv[j]; // interchange scale factor
}
indx[j] = imax;
if( lu.get(j,j) == 0)
return false;
if( j != DIM-1) { // divide by pivot element
T dum = T(1) / lu.get(j,j);
for( Size i = j + 1; i < DIM; i++)
lu.set(i, j, lu.get(i,j) * dum);
}
}
return true;
}
template <class T, Size DIM>
void Matrix_inverter<T,DIM,DIM>::lu_backsubstitution(
const Matrix& lu,
const Index_vector& indx,
Vector& b)
{
// when ii != DIM+1, ii is index of first non-vanishing element of b
Size ii = DIM+1;
for( Size i = 0; i < DIM; i++) {
Size ip = indx[i];
T sum = b[ip];
b[ip] = b[i];
if( ii != DIM+1) {
for( Size j = ii; j < i; j++) {
sum -= lu.get(i,j) * b[j];
}
} else {
if( sum != T(0)) { // non-zero element
ii = i;
}
}
b[i] = sum;
}
for( Size i2 = DIM; i2 > 0;) { // backsubstitution
--i2;
T sum = b[i2];
for( Size j = i2+1; j < DIM; j++)
sum -= lu.get(i2,j) * b[j];
b[i2] = sum / lu.get(i2,i2); // store comp. of sol. vector
}
}
template <class T, Size DIM>
bool Matrix_inverter<T,DIM,DIM>::invert( Matrix& mat)
{
Matrix lu(mat); // working copy of matrix to invert
Index_vector indx; // row permutation info
// LU decompose, return if it fails
if( !lu_decomposition(lu, indx))
return false;
// solve for each column vector of the I matrix
for( Size j = 0; j < DIM; ++j) {
Vector col(T(0)); // TODO: do that directly in the mat matrix
col[j] = T(1);
lu_backsubstitution( lu, indx, col);
for( Size i = 0; i < DIM; ++i) {
mat.set( i, j, col[i]);
}
}
return true;
}
// Matrix inversion class, specialization for 1x1 matrix
template <class T>
class Matrix_inverter<T,1,1>
{
public:
typedef math::Matrix<T,1,1> Matrix;
static inline bool invert( Matrix& mat)
{
T s = mat.get( 0, 0);
if( s == T(0))
return false;
mat.set( 0, 0, T(1) / s);
return true;
}
};
// Matrix inversion class, specialization for 2x2 matrix
template <class T>
class Matrix_inverter<T,2,2>
{
public:
typedef math::Matrix<T,2,2> Matrix;
static inline bool invert( Matrix& mat)
{
T a = mat.get( 0, 0);
T b = mat.get( 0, 1);
T c = mat.get( 1, 0);
T d = mat.get( 1, 1);
T det = a*d - b*c;
if( det == T( 0))
return false;
T rdet = T(1) / det;
mat.set( 0, 0, d * rdet);
mat.set( 0, 1,-b * rdet);
mat.set( 1, 0,-c * rdet);
mat.set( 1, 1, a * rdet);
return true;
}
};
template <typename T, Size ROW, Size COL>
inline bool Matrix<T,ROW,COL>::invert()
{
return Matrix_inverter<T,ROW,COL>::invert( *this);
}
//------ Specializations and (specialized) overloads --------------------------
// Specialization of common matrix multiplication for 4x4 matrices.
template <typename T>
inline Matrix<T,4,4>& operator*=(
Matrix<T,4,4>& lhs,
const Matrix<T,4,4>& rhs)
{
Matrix<T,4,4> old( lhs);
lhs.xx = old.xx * rhs.xx + old.xy * rhs.yx + old.xz * rhs.zx + old.xw * rhs.wx;
lhs.xy = old.xx * rhs.xy + old.xy * rhs.yy + old.xz * rhs.zy + old.xw * rhs.wy;
lhs.xz = old.xx * rhs.xz + old.xy * rhs.yz + old.xz * rhs.zz + old.xw * rhs.wz;
lhs.xw = old.xx * rhs.xw + old.xy * rhs.yw + old.xz * rhs.zw + old.xw * rhs.ww;
lhs.yx = old.yx * rhs.xx + old.yy * rhs.yx + old.yz * rhs.zx + old.yw * rhs.wx;
lhs.yy = old.yx * rhs.xy + old.yy * rhs.yy + old.yz * rhs.zy + old.yw * rhs.wy;
lhs.yz = old.yx * rhs.xz + old.yy * rhs.yz + old.yz * rhs.zz + old.yw * rhs.wz;
lhs.yw = old.yx * rhs.xw + old.yy * rhs.yw + old.yz * rhs.zw + old.yw * rhs.ww;
lhs.zx = old.zx * rhs.xx + old.zy * rhs.yx + old.zz * rhs.zx + old.zw * rhs.wx;
lhs.zy = old.zx * rhs.xy + old.zy * rhs.yy + old.zz * rhs.zy + old.zw * rhs.wy;
lhs.zz = old.zx * rhs.xz + old.zy * rhs.yz + old.zz * rhs.zz + old.zw * rhs.wz;
lhs.zw = old.zx * rhs.xw + old.zy * rhs.yw + old.zz * rhs.zw + old.zw * rhs.ww;
lhs.wx = old.wx * rhs.xx + old.wy * rhs.yx + old.wz * rhs.zx + old.ww * rhs.wx;
lhs.wy = old.wx * rhs.xy + old.wy * rhs.yy + old.wz * rhs.zy + old.ww * rhs.wy;
lhs.wz = old.wx * rhs.xz + old.wy * rhs.yz + old.wz * rhs.zz + old.ww * rhs.wz;
lhs.ww = old.wx * rhs.xw + old.wy * rhs.yw + old.wz * rhs.zw + old.ww * rhs.ww;
return lhs;
}
// Specialization of common matrix multiplication for 4x4 matrices.
template <typename T>
inline Matrix<T,4,4> operator*(
const Matrix<T,4,4>& lhs,
const Matrix<T,4,4>& rhs)
{
Matrix<T,4,4> temp( lhs);
temp *= rhs;
return temp;
}
#endif // MI_FOR_DOXYGEN_ONLY
// end group mi_math_matrix
} // namespace math
} // namespace mi
#endif // MI_MATH_MATRIX_H
Namespaces
- namespace
- Common namespace for APIs of NVIDIA Advanced Rendering Center GmbH. More...
- namespace
- Namespace for the Math API. More...
Classes
- class
- NxM-dimensional matrix class template of fixed dimensions. More...
- struct
- Specialization for 1x1-matrix. More...
- struct
- Specialization for 1x2-matrix. More...
- struct
- Specialization for 1x3-matrix. More...
- struct
- Specialization for 1x4-matrix. More...
- struct
- Specialization for 2x1-matrix. More...
- struct
- Specialization for 2x2-matrix. More...
- struct
- Specialization for 2x3-matrix. More...
- struct
- Specialization for 2x4-matrix. More...
- struct
- Specialization for 3x1-matrix. More...
- struct
- Specialization for 3x2-matrix. More...
- struct
- Specialization for 3x3-matrix. More...
- struct
- Specialization for 3x4-matrix. More...
- struct
- Specialization for 4x1-matrix. More...
- struct
- Specialization for 4x2-matrix. More...
- struct
- Specialization for 4x3-matrix. More...
- struct
- Specialization for 4x4-matrix. More...
- struct
- Storage class for a NxM-dimensional matrix class template of fixed dimensions. More...
Functions
- template< typename T, Size, Size>T* ( Matrix_struct < T , ROW , COL >& mat)
- Returns the base pointer to the matrix data. More...
- template< typename T, Size, Size>const T* ( const Matrix_struct < T , ROW , COL >& mat)
- Returns the base pointer to the matrix data. More...
- template< typename T, Size, Size>bool ( const Matrix < T , ROW , COL >& lhs, const Matrix < T , ROW , COL >& rhs)
- Returns true if lhs is elementwise not equal to rhs. More...
- template< typename T, Size, Size, Size, Size> Matrix < T , ROW1 , COL2 > ( const Matrix < T , ROW1 , COL1 >& lhs, const Matrix < T , ROW2 , COL2 >& rhs)
- Performs matrix multiplication, lhs times rhs, and returns the new result. More...
- template< typename T, Size, Size, Size> Vector < T , ROW > ( const Matrix < T , ROW , COL >& mat, const Vector < T , DIM >& vec)
- Multiplies the (column) vector vec from the right with the matrix mat and returns the resulting vector. More...
- template< Size, typename T, Size, Size> Vector < T , COL > ( const Vector < T , DIM >& vec, const Matrix < T , ROW , COL >& mat)
- Multiplies the (row) vector vec from the left with the matrix mat and returns the resulting vector. More...
- template< typename T, Size, Size> Matrix < T , ROW , COL > ( const Matrix < T , ROW , COL >& mat, T factor)
- Multiplies the matrix mat elementwise with the scalar factor and returns the new result. More...
- template< typename T, Size, Size> Matrix < T , ROW , COL > ( T factor, const Matrix < T , ROW , COL >& mat)
- Multiplies the matrix mat elementwise with the scalar factor and returns the new result. More...
- template< typename T, Size, Size> Matrix < T , ROW , COL >& ( Matrix < T , ROW , COL >& lhs, const Matrix < T , COL , COL >& rhs)
- Performs matrix multiplication, lhs times rhs, assigns it to lhs, and returns the modified lhs. More...
- template< typename T, Size, Size> Matrix < T , ROW , COL >& ( Matrix < T , ROW , COL >& mat, T factor)
- Multiplies the matrix mat elementwise with the scalar factor and returns the modified matrix mat. More...
- template< typename T, Size, Size> Matrix < T , ROW , COL > ( const Matrix < T , ROW , COL >& lhs, const Matrix < T , ROW , COL >& rhs)
- Adds lhs and rhs elementwise and returns the new result. More...
- template< typename T, Size, Size> Matrix < T , ROW , COL >& ( Matrix < T , ROW , COL >& lhs, const Matrix < T , ROW , COL >& rhs)
- Adds rhs elementwise to lhs and returns the modified lhs. More...
- template< typename T, Size, Size> Matrix < T , ROW , COL > ( const Matrix < T , ROW , COL >& lhs, const Matrix < T , ROW , COL >& rhs)
- Subtracts rhs elementwise from lhs and returns the new result. More...
- template< typename T, Size, Size> Matrix < T , ROW , COL > ( const Matrix < T , ROW , COL >& mat)
- Negates the matrix mat elementwise and returns the new result. More...
- template< typename T, Size, Size> Matrix < T , ROW , COL >& ( Matrix < T , ROW , COL >& lhs, const Matrix < T , ROW , COL >& rhs)
- Subtracts rhs elementwise from lhs and returns the modified lhs. More...
- template< typename T, Size, Size>bool ( const Matrix < T , ROW , COL >& lhs, const Matrix < T , ROW , COL >& rhs)
- Returns true if lhs is lexicographically less than rhs. More...
- template< typename T, Size, Size>bool ( const Matrix < T , ROW , COL >& lhs, const Matrix < T , ROW , COL >& rhs)
- Returns true if lhs is lexicographically less than or equal to rhs. More...
- template< typename T, Size, Size>bool ( const Matrix < T , ROW , COL >& lhs, const Matrix < T , ROW , COL >& rhs)
- Returns true if lhs is elementwise equal to rhs. More...
- template< typename T, Size, Size>bool ( const Matrix < T , ROW , COL >& lhs, const Matrix < T , ROW , COL >& rhs)
- Returns true if lhs is lexicographically greater than rhs. More...
- template< typename T, Size, Size>bool ( const Matrix < T , ROW , COL >& lhs, const Matrix < T , ROW , COL >& rhs)
- Returns true if lhs is lexicographically greater than or equal to rhs. More...
- template< Size, Size, typename T, Size, Size> Matrix < T , NEW_ROW , NEW_COL > ( const Matrix < T , ROW , COL >& mat)
- Returns the upper-left sub-matrix of size NEW_ROW times NEW_COL. More...
- template< typename T, typename U> Vector < U , 3 > ( const Matrix < T , 4 , 4 >& mat, const Vector < U , 3 >& normal)
- Returns a transformed 3D normal vector by applying the 3x3 transposed linear sub-transformation in the inverse of the 4x4 matrix mat on the 3D normal vector normal. More...
- template< typename T, typename U> Vector < U , 3 > ( const Matrix < T , 4 , 4 >& inv_mat, const Vector < U , 3 >& normal)
- Returns an inverse transformed 3D normal vector by applying the 3x3 transposed linear sub-transformation in the 4x4 matrix inv_mat on the 3D normal vector normal. More...
- template< typename T, typename U>U ( const Matrix < T , 4 , 4 >& mat, const U& point)
- Returns a transformed 1D point by applying the full transformation in the 4x4 matrix mat on the 1D point point, which includes the translation. More...
- template< typename T, typename U> Vector < U , 2 > ( const Matrix < T , 4 , 4 >& mat, const Vector < U , 2 >& point)
- Returns a transformed 2D point by applying the full transformation in the 4x4 matrix mat on the 2D point point, which includes the translation. More...
- template< typename T, typename U> Vector < U , 3 > ( const Matrix < T , 4 , 4 >& mat, const Vector < U , 3 >& point)
- Returns a transformed 3D point by applying the full transformation in the 4x4 matrix mat on the 3D point point, which includes the translation. More...
- template< typename T, typename U> Vector < U , 4 > ( const Matrix < T , 4 , 4 >& mat, const Vector < U , 4 >& point)
- Returns a transformed 4D point by applying the full transformation in the 4x4 matrix mat on the 4D point point, which includes the translation. More...
- template< typename T, typename U>U ( const Matrix < T , 4 , 4 >& mat, const U& vector)
- Returns a transformed 1D vector by applying the 1x1 linear sub-transformation in the 4x4 matrix mat on the 1D vector vector, which excludes the translation. More...
- template< typename T, typename U> Vector < U , 2 > ( const Matrix < T , 4 , 4 >& mat, const Vector < U , 2 >& vector)
- Returns a transformed 2D vector by applying the 2x2 linear sub-transformation in the 4x4 matrix mat on the 2D vector vector, which excludes the translation. More...
- template< typename T, typename U> Vector < U , 3 > ( const Matrix < T , 4 , 4 >& mat, const Vector < U , 3 >& vector)
- Returns a transformed 3D vector by applying the 3x3 linear sub-transformation in the 4x4 matrix mat on the 3D vector vector, which excludes the translation. More...
- template< typename T, Size, Size> Matrix < T , COL , ROW > ( const Matrix < T , ROW , COL >& mat)
- Returns the transpose of the matrix mat by exchanging rows and columns. More...