vector.h File Reference
Description
Math vector class template of fixed dimension with arithmetic operators and generic functions. See Math Vector Class.
Code Example
vector.h
//*****************************************************************************
// Copyright 1986, 2016 NVIDIA Corporation. All rights reserved.
//*****************************************************************************
//*****************************************************************************
#ifndef MI_MATH_VECTOR_H
#define MI_MATH_VECTOR_H
#include <mi/base/types.h>
#include <mi/math/assert.h>
#include <mi/math/function.h>
namespace mi {
namespace math {
enum From_iterator_tag {
FROM_ITERATOR
};
// Color and Vector can be converted into each other. To avoid cyclic dependencies among the
// headers, the Color_struct class is already defined here.
//------- POD struct that provides storage for color elements --------
struct Color_struct
{
Float32
r;
Float32
g;
Float32
b;
Float32
a;
};
//------- POD struct that provides storage for vector elements --------
template <typename T, Size DIM>
struct Vector_struct
{
T elements[DIM];
};
template <typename T> struct Vector_struct<T, 1>
{
T x;
};
template <typename T> struct Vector_struct<T, 2>
{
T x;
T y;
};
template <typename T> struct Vector_struct<T, 3>
{
T x;
T y;
T z;
};
template <typename T> struct Vector_struct<T, 4>
{
T x;
T y;
T z;
T w;
};
//------ Indirect access to vector storage base ptr to keep Vector_struct a POD --
template <typename T, Size DIM>
inline T* vector_base_ptr( Vector_struct< T, DIM>& vec)
{
return vec.elements;
}
template <typename T, Size DIM>
inline const T* vector_base_ptr( const Vector_struct< T, DIM>& vec)
{
return vec.elements;
}
template <typename T>
inline T* vector_base_ptr( Vector_struct< T, 1>& vec)
{
return &vec.x;
}
template <typename T>
inline const T* vector_base_ptr( const Vector_struct< T, 1>& vec)
{
return &vec.x;
}
template <typename T>
inline T* vector_base_ptr( Vector_struct< T, 2>& vec)
{
return &vec.x;
}
template <typename T>
inline const T* vector_base_ptr( const Vector_struct< T, 2>& vec)
{
return &vec.x;
}
template <typename T>
inline T* vector_base_ptr( Vector_struct< T, 3>& vec)
{
return &vec.x;
}
template <typename T>
inline const T* vector_base_ptr( const Vector_struct< T, 3>& vec)
{
return &vec.x;
}
template <typename T>
inline T* vector_base_ptr( Vector_struct< T, 4>& vec)
{
return &vec.x;
}
template <typename T>
inline const T* vector_base_ptr( const Vector_struct< T, 4>& vec)
{
return &vec.x;
}
// end group mi_math_vector_struct
//------ Generic Vector Class -------------------------------------------------
template < class T, Size DIM>
class Vector;
// Using a proxy class to make comparison operators a lesser match when it comes
// to an overload resolution set with the MetaSL definitions of these operators.
template <typename T, Size DIM>
struct Vector_proxy_
{
const Vector<T,DIM>& vec;
Vector_proxy_( const Vector<T,DIM>& v) : vec( v) { }
private:
Vector_proxy_& operator=( const Vector_proxy_& o);
};
template < class T, Size DIM>
class Vector : public Vector_struct<T, DIM>
{
public:
typedef Vector_struct< T, DIM>
Pod_type;
typedef Vector_struct< T, DIM>
storage_type;
typedef T value_type;
typedef Size
size_type;
typedef Difference
difference_type;
typedef T * pointer;
typedef const T * const_pointer;
typedef T & reference;
typedef const T & const_reference;
static const Size
DIMENSION = DIM;
static const Size
SIZE = DIM;
static inline Size
size() { return SIZE; }
static inline Size
max_size() { return SIZE; }
inline T* begin() { return mi::math::vector_base_ptr( *this); }
inline const T* begin() const { return mi::math::vector_base_ptr( *this); }
inline T* end() { return begin() + DIM; }
inline const T* end() const { return begin() + DIM; }
inline Vector()
{
#if defined(DEBUG) || (defined(_MSC_VER) && _MSC_VER <= 1310)
// In debug mode, default-constructed vectors are initialized with signaling NaNs or, if not
// applicable, with a maximum value to increase the chances of diagnosing incorrect use of
// an uninitialized vector.
//
// When compiling with Visual C++ 7.1 or earlier, this code is enabled in all variants to
// work around a very obscure compiler bug that causes the compiler to crash.
typedef mi::base::numeric_traits< T> Traits;
T v = (Traits::has_signaling_NaN) ? Traits::signaling_NaN()
: Traits::max MI_PREVENT_MACRO_EXPAND ();
for( Size i(0u); i < DIM; ++i)
(*this)[i] = v;
#endif
}
inline Vector( const Vector_struct< T, DIM>& vec )
{
for( Size i(0u); i < DIM; ++i)
(*this)[i] = mi::math::vector_base_ptr(vec)[i];
}
inline explicit Vector(T v)
{
for( Size i(0u); i < DIM; ++i)
(*this)[i] = v;
}
template <typename Iterator>
inline Vector(From_iterator_tag, Iterator p)
{
for( Size i(0u); i < DIM; ++i, ++p)
(*this)[i] = *p;
}
template <typename T2>
inline explicit Vector( T2 const (& array)[DIM])
{
for( Size i(0u); i < DIM; ++i)
(*this)[i] = array[i];
}
template <typename T2>
inline explicit Vector( const Vector< T2, DIM>& other)
{
for( Size i(0u); i < DIM; ++i)
(*this)[i] = T(other[i]);
}
inline Vector(T v1, T v2)
{
mi_static_assert(DIM == 2);
begin()[0] = v1;
begin()[1] = v2;
}
inline Vector(T v1, T v2, T v3)
{
mi_static_assert(DIM == 3);
begin()[0] = v1;
begin()[1] = v2;
begin()[2] = v3;
}
inline Vector(T v1, const Vector< T, 2>& v2)
{
mi_static_assert(DIM == 3);
begin()[0] = v1;
begin()[1] = v2.x;
begin()[2] = v2.y;
}
inline Vector(const Vector< T, 2>& v1, T v2)
{
mi_static_assert(DIM == 3);
begin()[0] = v1.x;
begin()[1] = v1.y;
begin()[2] = v2;
}
inline Vector(T v1, T v2, T v3, T v4)
{
mi_static_assert(DIM == 4);
begin()[0] = v1;
begin()[1] = v2;
begin()[2] = v3;
begin()[3] = v4;
}
inline Vector(T v1, T v2, const Vector< T, 2>& v3)
{
mi_static_assert(DIM == 4);
begin()[0] = v1;
begin()[1] = v2;
begin()[2] = v3.x;
begin()[3] = v3.y;
}
inline Vector(T v1, const Vector< T, 2>& v2, T v3)
{
mi_static_assert(DIM == 4);
begin()[0] = v1;
begin()[1] = v2.x;
begin()[2] = v2.y;
begin()[3] = v3;
}
inline Vector(const Vector< T, 2>& v1, T v2, T v3)
{
mi_static_assert(DIM == 4);
begin()[0] = v1.x;
begin()[1] = v1.y;
begin()[2] = v2;
begin()[3] = v3;
}
inline Vector(const Vector< T, 2>& v1, const Vector< T, 2>& v2)
{
mi_static_assert(DIM == 4);
begin()[0] = v1.x;
begin()[1] = v1.y;
begin()[2] = v2.x;
begin()[3] = v2.y;
}
inline Vector(T v1, const Vector< T, 3>& v2)
{
mi_static_assert(DIM == 4);
begin()[0] = v1;
begin()[1] = v2.x;
begin()[2] = v2.y;
begin()[3] = v2.z;
}
inline Vector(const Vector< T, 3>& v1, T v2)
{
mi_static_assert(DIM == 4);
begin()[0] = v1.x;
begin()[1] = v1.y;
begin()[2] = v1.z;
begin()[3] = v2;
}
inline explicit Vector( const Color_struct& color)
{
mi_static_assert(DIM == 4);
this->x = color.r;
this->y = color.g;
this->z = color.b;
this->w = color.a;
}
inline Vector& operator=( const Vector& other)
{
for( Size i(0u); i < DIM; ++i)
(*this)[i] = other[i];
return *this;
}
inline Vector& operator=( T s)
{
for( Size i(0u); i < DIM; ++i)
(*this)[i] = s;
return *this;
}
inline Vector& operator=( const Color_struct& color)
{
mi_static_assert(DIM == 4);
this->x = color.r;
this->y = color.g;
this->z = color.b;
this->w = color.a;
return *this;
}
inline T& operator[](Size i)
{
mi_math_assert_msg(i < DIM, "precondition");
return begin()[i];
}
inline const T& operator[](Size i) const
{
mi_math_assert_msg(i < DIM, "precondition");
return begin()[i];
}
inline const T& get(Size i) const
{
mi_math_assert_msg(i < DIM, "precondition");
return begin()[i];
}
inline void set(Size i, T value)
{
mi_math_assert_msg(i < DIM, "precondition");
begin()[i] = value;
}
inline bool normalize()
{
const T rec_length = T(1) / length( *this);
const bool result = isfinite( rec_length);
if( result)
(*this) *= rec_length;
return result;
}
//------ Free comparison operators ==, !=, <, <=, >, >= for vectors --------
// Using a proxy class to make comparison operators a lesser match when it comes
// to an overload resolution set with the MetaSL definitions of these operators.
inline bool operator==( Vector_proxy_<T,DIM> rhs) const
{
return is_equal( *this, rhs.vec);
}
inline bool operator!=( Vector_proxy_<T,DIM> rhs) const
{
return is_not_equal( *this, rhs.vec);
}
inline bool operator<( Vector_proxy_<T,DIM> rhs) const
{
return lexicographically_less( *this, rhs.vec);
}
inline bool operator<=( Vector_proxy_<T,DIM> rhs) const
{
return lexicographically_less_or_equal( *this, rhs.vec);
}
inline bool operator>( Vector_proxy_<T,DIM> rhs) const
{
return lexicographically_greater( *this, rhs.vec);
}
inline bool operator>=( Vector_proxy_<T,DIM> rhs) const
{
return lexicographically_greater_or_equal( *this, rhs.vec);
}
};
//------ Free operators +=, -=, *=, /=, +, -, *, and / for vectors -------------
template <typename T, Size DIM>
inline Vector< T, DIM>& operator+=(
Vector< T, DIM>& lhs,
const Vector< T, DIM>& rhs)
{
for( Size i(0u); i < DIM; ++i)
lhs[i] += rhs[i];
return lhs;
}
template <typename T, Size DIM>
inline Vector< T, DIM>& operator-=(
Vector< T, DIM>& lhs,
const Vector< T, DIM>& rhs)
{
for( Size i(0u); i < DIM; ++i)
lhs[i] -= rhs[i];
return lhs;
}
template <typename T, Size DIM>
inline Vector< T, DIM>& operator*=(
Vector< T, DIM>& lhs,
const Vector< T, DIM>& rhs)
{
for( Size i(0u); i < DIM; ++i)
lhs[i] *= rhs[i];
return lhs;
}
template <typename T, Size DIM>
inline Vector< T, DIM>& operator%=(
Vector< T, DIM>& lhs,
const Vector< T, DIM>& rhs)
{
for( Size i(0u); i < DIM; ++i)
lhs[i] %= rhs[i];
return lhs;
}
template <typename T, typename U, Size DIM>
inline Vector< T, DIM>& operator/=(
Vector< T, DIM>& lhs,
const Vector< U, DIM>& rhs)
{
for( Size i(0u); i < DIM; ++i)
lhs[i] = T(lhs[i] / rhs[i]);
return lhs;
}
template <typename T, Size DIM>
inline Vector< T, DIM>
operator+(
const Vector< T, DIM>& lhs,
const Vector< T, DIM>& rhs)
{
Vector< T, DIM> tmp( lhs);
return tmp += rhs;
}
template <typename T, Size DIM>
inline Vector< T, DIM>
operator-(
const Vector< T, DIM>& lhs,
const Vector< T, DIM>& rhs)
{
Vector< T, DIM> tmp( lhs);
return tmp -= rhs;
}
template <typename T, Size DIM>
inline Vector< T, DIM>
operator*(
const Vector< T, DIM>& lhs,
const Vector< T, DIM>& rhs)
{
Vector< T, DIM> tmp( lhs);
return tmp *= rhs;
}
template <typename T, Size DIM>
inline Vector< T, DIM>
operator%(
const Vector< T, DIM>& lhs,
const Vector< T, DIM>& rhs)
{
Vector< T, DIM> tmp( lhs);
return tmp %= rhs;
}
template <typename T, typename U, Size DIM>
inline Vector< T, DIM>
operator/(
const Vector< T, DIM>& lhs,
const Vector< U, DIM>& rhs)
{
Vector< T, DIM> tmp(lhs);
return tmp /= rhs;
}
template <typename T, Size DIM>
inline Vector< T, DIM>
operator-( const Vector< T, DIM>& v)
{
Vector< T, DIM> tmp;
for( Size i(0u); i < DIM; ++i)
tmp[i] = -v[i];
return tmp;
}
//------ Free operator *=, /=, *, and / definitions for scalars ---------------
template <typename T, typename TT, Size DIM>
inline Vector< T, DIM>& operator*=(
Vector< T, DIM>& v,
TT s)
{
for( Size i(0u); i < DIM; ++i)
v[i] = T(v[i] * s);
return v;
}
template <typename T, typename TT, Size DIM>
inline Vector< T, DIM>& operator%=(
Vector< T, DIM>& v,
TT s)
{
for( Size i(0u); i < DIM; ++i)
v[i] = T(v[i] % s);
return v;
}
template <typename T, typename TT, Size DIM>
inline Vector< T, DIM>& operator/=(
Vector< T, DIM>& v,
TT s)
{
for( Size i(0u); i < DIM; ++i)
v[i] = T(v[i] / s);
return v;
}
template <typename T, typename TT, Size DIM>
inline Vector< T, DIM>
operator*(
const Vector< T, DIM>& v,
TT s)
{
Vector< T, DIM> tmp( v);
return tmp *= s;
}
template <typename T, typename TT, Size DIM>
inline Vector< T, DIM>
operator*(
TT s,
const Vector< T, DIM>& v)
{
Vector< T, DIM> tmp(v);
return tmp *= s;
}
template <typename T, typename TT, Size DIM>
inline Vector< T, DIM>
operator%(
const Vector< T, DIM>& v,
TT s)
{
Vector< T, DIM> tmp(v);
return tmp %= s;
}
template <typename T, typename TT, Size DIM>
inline Vector< T, DIM>
operator/(
const Vector< T, DIM>& v,
TT s)
{
Vector< T, DIM> tmp( v);
return tmp /= s;
}
//------ Free operator ++, -- for vectors -------------------------------------
template <typename T, Size DIM>
inline Vector< T, DIM>& operator++( Vector< T, DIM>& vec)
{
general::for_each( vec, functor::Operator_pre_incr());
return vec;
}
template <typename T, Size DIM>
inline Vector< T, DIM>& operator--( Vector< T, DIM>& vec)
{
general::for_each( vec, functor::Operator_pre_decr());
return vec;
}
//------ Free operators !, &&, ||, ^ for bool vectors and bool scalars ---------
template <Size DIM>
inline Vector< bool, DIM>
operator&&(
const Vector< bool, DIM>& lhs,
const Vector< bool, DIM>& rhs)
{
Vector< bool, DIM> result;
general::transform( lhs, rhs, result, functor::Operator_and_and());
return result;
}
template <Size DIM>
inline Vector< bool, DIM>
operator&&(
bool lhs,
const Vector< bool, DIM>& rhs)
{
Vector< bool, DIM> result;
general::transform_left_scalar( lhs, rhs, result, functor::Operator_and_and());
return result;
}
template <Size DIM>
inline Vector< bool, DIM>
operator&&(
const Vector< bool, DIM>& lhs,
bool rhs)
{
Vector< bool, DIM> result;
general::transform_right_scalar( lhs, rhs, result, functor::Operator_and_and());
return result;
}
template <Size DIM>
inline Vector< bool, DIM>
operator||(
const Vector< bool, DIM>& lhs,
const Vector< bool, DIM>& rhs)
{
Vector< bool, DIM> result;
general::transform(lhs, rhs, result, functor::Operator_or_or());
return result;
}
template <Size DIM>
inline Vector< bool, DIM>
operator||(
bool lhs,
const Vector< bool, DIM>& rhs)
{
Vector< bool, DIM> result;
general::transform_left_scalar( lhs, rhs, result, functor::Operator_or_or());
return result;
}
template <Size DIM>
inline Vector< bool, DIM>
operator||(
const Vector< bool, DIM>& lhs,
bool rhs)
{
Vector< bool, DIM> result;
general::transform_right_scalar( lhs, rhs, result, functor::Operator_or_or());
return result;
}
template <Size DIM>
inline Vector< bool, DIM>
operator^(
const Vector< bool, DIM>& lhs,
const Vector< bool, DIM>& rhs)
{
Vector< bool, DIM> result;
general::transform( lhs, rhs, result, functor::Operator_xor());
return result;
}
template <Size DIM>
inline Vector< bool, DIM>
operator^(
bool lhs,
const Vector< bool, DIM>& rhs)
{
Vector< bool, DIM> result;
general::transform_left_scalar( lhs, rhs, result, functor::Operator_xor());
return result;
}
template <Size DIM>
inline Vector< bool, DIM>
operator^(
const Vector< bool, DIM>& lhs,
bool rhs)
{
Vector< bool, DIM> result;
general::transform_right_scalar( lhs, rhs, result, functor::Operator_xor());
return result;
}
template <Size DIM>
inline Vector< bool, DIM>
operator!(
const Vector< bool, DIM>& vec)
{
Vector< bool, DIM> result;
general::transform( vec, result, functor::Operator_not());
return result;
}
//------ Elementwise comparison operators returning a bool vector. ------------
template <typename T, Size DIM>
inline Vector< bool, DIM>
elementwise_is_equal(
const Vector< T, DIM>& lhs,
const Vector< T, DIM>& rhs)
{
Vector< bool, DIM> result;
general::transform( lhs, rhs, result,functor::Operator_equal_equal());
return result;
}
template <typename T, Size DIM>
inline Vector< bool, DIM>
elementwise_is_not_equal(
const Vector< T, DIM>& lhs,
const Vector< T, DIM>& rhs)
{
Vector< bool, DIM> result;
general::transform( lhs, rhs, result,functor::Operator_not_equal());
return result;
}
template <typename T, Size DIM>
inline Vector< bool, DIM>
elementwise_is_less_than(
const Vector< T, DIM>& lhs,
const Vector< T, DIM>& rhs)
{
Vector< bool, DIM> result;
general::transform( lhs, rhs, result,functor::Operator_less());
return result;
}
template <typename T, Size DIM>
inline Vector< bool, DIM>
elementwise_is_less_than_or_equal(
const Vector< T, DIM>& lhs,
const Vector< T, DIM>& rhs)
{
Vector< bool, DIM> result;
general::transform( lhs, rhs, result,functor::Operator_less_equal());
return result;
}
template <typename T, Size DIM>
inline Vector< bool, DIM>
elementwise_is_greater_than(
const Vector< T, DIM>& lhs,
const Vector< T, DIM>& rhs)
{
Vector< bool, DIM> result;
general::transform( lhs, rhs, result,functor::Operator_greater());
return result;
}
template <typename T, Size DIM>
inline Vector< bool, DIM>
elementwise_is_greater_than_or_equal(
const Vector< T, DIM>& lhs,
const Vector< T, DIM>& rhs)
{
Vector< bool, DIM> result;
general::transform( lhs, rhs, result,functor::Operator_greater_equal());
return result;
}
//------ Function Overloads for Vector Algorithms -----------------------------
template <typename T, Size DIM>
inline Vector< T, DIM>
abs( const Vector< T, DIM>& v)
{
Vector< T, DIM> result;
for( Size i = 0; i != DIM; ++i)
result[i] = abs( v[i]);
return result;
}
template <typename T, Size DIM>
inline Vector< T, DIM>
acos( const Vector< T, DIM>& v)
{
Vector< T, DIM> result;
for( Size i = 0; i != DIM; ++i)
result[i] = acos( v[i]);
return result;
}
template <typename T, Size DIM>
inline bool all( const Vector< T, DIM>& v)
{
for( Size i = 0; i != DIM; ++i)
if( !all(v[i]))
return false;
return true;
}
template <typename T, Size DIM>
inline bool any( const Vector< T, DIM>& v)
{
for( Size i = 0; i != DIM; ++i)
if( any(v[i]))
return true;
return false;
}
template <typename T, Size DIM>
inline Vector< T, DIM>
asin( const Vector< T, DIM>& v)
{
Vector< T, DIM> result;
for( Size i = 0; i != DIM; ++i)
result[i] = asin( v[i]);
return result;
}
template <typename T, Size DIM>
inline Vector< T, DIM>
atan( const Vector< T, DIM>& v)
{
Vector< T, DIM> result;
for( Size i = 0; i != DIM; ++i)
result[i] = atan( v[i]);
return result;
}
template <typename T, Size DIM>
inline Vector< T, DIM>
atan2( const Vector< T, DIM>& v, const Vector< T, DIM>& w)
{
Vector< T, DIM> result;
for( Size i = 0; i != DIM; ++i)
result[i] = atan2( v[i], w[i]);
return result;
}
template <typename T, Size DIM>
inline Vector< T, DIM>
ceil( const Vector< T, DIM>& v)
{
Vector< T, DIM> result;
for( Size i = 0; i != DIM; ++i)
result[i] = ceil( v[i]);
return result;
}
template <typename T, Size DIM>
inline Vector< T, DIM>
clamp(
const Vector< T, DIM>& v,
const Vector< T, DIM>& low,
const Vector< T, DIM>& high)
{
Vector< T, DIM> result;
for( Size i = 0u; i < DIM; ++i)
result[i] = clamp( v[i], low[i], high[i]);
return result;
}
template <typename T, Size DIM>
inline Vector< T, DIM>
clamp(
const Vector< T, DIM>& v,
const Vector< T, DIM>& low,
T high)
{
Vector< T, DIM> result;
for( Size i = 0u; i < DIM; ++i)
result[i] = clamp( v[i], low[i], high);
return result;
}
template <typename T, Size DIM>
inline Vector< T, DIM>
clamp(
const Vector< T, DIM>& v,
T low,
const Vector< T, DIM>& high)
{
Vector< T, DIM> result;
for( Size i = 0u; i < DIM; ++i)
result[i] = clamp( v[i], low, high[i]);
return result;
}
template <typename T, Size DIM>
inline Vector< T, DIM>
clamp(
const Vector< T, DIM>& v,
T low,
T high)
{
Vector< T, DIM> result;
for( Size i = 0u; i < DIM; ++i)
result[i] = clamp( v[i], low, high);
return result;
}
template <typename T, Size DIM>
inline Vector< T, DIM>
cos( const Vector< T, DIM>& v)
{
Vector< T, DIM> result;
for( Size i = 0; i != DIM; ++i)
result[i] = cos( v[i]);
return result;
}
template <typename T, Size DIM>
inline Vector< T, DIM>
degrees( const Vector< T, DIM>& v)
{
Vector< T, DIM> result;
for( Size i = 0; i != DIM; ++i)
result[i] = degrees( v[i]);
return result;
}
template <typename T, Size DIM>
inline Vector< T, DIM>
elementwise_max(
const Vector< T, DIM>& lhs,
const Vector< T, DIM>& rhs)
{
Vector< T, DIM> r;
for( Size i(0u); i < Vector<T,DIM>::DIMENSION; ++i)
r[i] = base::max MI_PREVENT_MACRO_EXPAND ( lhs[i], rhs[i] );
return r;
}
template <typename T, Size DIM>
inline Vector< T, DIM>
elementwise_min(
const Vector< T, DIM>& lhs,
const Vector< T, DIM>& rhs)
{
Vector< T, DIM> r;
for( Size i(0u); i < Vector<T,DIM>::DIMENSION; ++i)
r[i] = base::min MI_PREVENT_MACRO_EXPAND ( lhs[i], rhs[i] );
return r;
}
template <typename T, Size DIM>
inline Vector< T, DIM>
exp( const Vector< T, DIM>& v)
{
Vector< T, DIM> result;
for( Size i = 0; i != DIM; ++i)
result[i] = exp( v[i]);
return result;
}
template <typename T, Size DIM>
inline Vector< T, DIM>
exp2( const Vector< T, DIM>& v)
{
Vector< T, DIM> result;
for( Size i = 0; i != DIM; ++i)
result[i] = exp2( v[i]);
return result;
}
template <typename T, Size DIM>
inline Vector< T, DIM>
floor( const Vector< T, DIM>& v)
{
Vector< T, DIM> result;
for( Size i = 0; i != DIM; ++i)
result[i] = floor( v[i]);
return result;
}
template <typename T, Size DIM>
inline Vector< T, DIM>
fmod( const Vector< T, DIM>& a, const Vector< T, DIM>& b)
{
Vector< T, DIM> result;
for( Size i = 0; i != DIM; ++i)
result[i] = fmod( a[i], b[i]);
return result;
}
template <typename T, Size DIM>
inline Vector< T, DIM>
fmod( const Vector< T, DIM>& a, T b)
{
Vector< T, DIM> result;
for( Size i = 0; i != DIM; ++i)
result[i] = fmod( a[i], b);
return result;
}
template <typename T, Size DIM>
inline Vector< T, DIM>
frac( const Vector< T, DIM>& v)
{
Vector< T, DIM> result;
for( Size i = 0; i != DIM; ++i)
result[i] = frac( v[i]);
return result;
}
template <typename T, Size DIM>
inline bool is_approx_equal(
const Vector< T, DIM>& left,
const Vector< T, DIM>& right,
T e)
{
for( Size i = 0u; i < DIM; ++i)
if( !is_approx_equal( left[i], right[i], e))
return false;
return true;
}
template <typename T, Size DIM>
inline Vector< T, DIM>
lerp(
const Vector< T, DIM>& v1,
const Vector< T, DIM>& v2,
const Vector< T, DIM>& t)
{
Vector< T, DIM> result;
for( Size i = 0; i != DIM; ++i)
result[i] = v1[i] * (T(1)-t[i]) + v2[i] * t[i];
return result;
}
template <typename T, Size DIM>
inline Vector< T, DIM>
lerp(
const Vector< T, DIM>& v1,
const Vector< T, DIM>& v2,
T t)
{
// equivalent to: return v1 * (T(1)-t) + v2 * t;
Vector< T, DIM> result;
T t2 = T(1) - t;
for( Size i = 0; i != DIM; ++i)
result[i] = v1[i] * t2 + v2[i] * t;
return result;
}
template <typename T, Size DIM>
inline Vector< T, DIM>
log( const Vector< T, DIM>& v)
{
Vector< T, DIM> result;
for( Size i = 0; i != DIM; ++i)
result[i] = log( v[i]);
return result;
}
template <typename T, Size DIM>
inline Vector< T, DIM>
log2
MI_PREVENT_MACRO_EXPAND ( const Vector< T, DIM>& v)
{
Vector< T, DIM> result;
for( Size i = 0; i != DIM; ++i)
result[i] = log2
MI_PREVENT_MACRO_EXPAND ( v[i]);
return result;
}
template <typename T, Size DIM>
inline Vector< T, DIM>
log10( const Vector< T, DIM>& v)
{
Vector< T, DIM> result;
for( Size i = 0; i != DIM; ++i)
result[i] = log10( v[i]);
return result;
}
template <typename T, Size DIM>
inline Vector< T, DIM>
modf( const Vector< T, DIM>& v, Vector< T, DIM>& i)
{
Vector< T, DIM> result;
for( Size j = 0; j != DIM; ++j)
result[j] = modf( v[j], i[j]);
return result;
}
template <typename T, Size DIM>
inline Vector< T, DIM>
pow( const Vector< T, DIM>& a, const Vector< T, DIM>& b)
{
Vector< T, DIM> result;
for( Size i = 0; i != DIM; ++i)
result[i] = pow( a[i], b[i]);
return result;
}
template <typename T, Size DIM>
inline Vector< T, DIM>
pow( const Vector< T, DIM>& a, T b)
{
Vector< T, DIM> result;
for( Size i = 0; i != DIM; ++i)
result[i] = pow( a[i], b);
return result;
}
template <typename T, Size DIM>
inline Vector< T, DIM>
radians( const Vector< T, DIM>& v)
{
Vector< T, DIM> result;
for( Size i = 0; i != DIM; ++i)
result[i] = radians( v[i]);
return result;
}
template <typename T, Size DIM>
inline Vector< T, DIM>
round( const Vector< T, DIM>& v)
{
Vector< T, DIM> result;
for( Size i = 0; i != DIM; ++i)
result[i] = round( v[i]);
return result;
}
template <typename T, Size DIM>
inline Vector< T, DIM>
rsqrt( const Vector< T, DIM>& v)
{
Vector< T, DIM> result;
for( Size i = 0; i != DIM; ++i)
result[i] = rsqrt( v[i]);
return result;
}
template <typename T, Size DIM>
inline Vector< T, DIM>
saturate( const Vector< T, DIM>& v)
{
Vector< T, DIM> result;
for( Size i = 0; i != DIM; ++i)
result[i] = saturate( v[i]);
return result;
}
template <typename T, Size DIM>
inline Vector< T, DIM>
sign( const Vector< T, DIM>& v)
{
Vector< T, DIM> result;
for( Size i = 0; i != DIM; ++i)
result[i] = sign( v[i]);
return result;
}
template <typename T, Size DIM>
inline Vector< T, DIM>
sin( const Vector< T, DIM>& v)
{
Vector< T, DIM> result;
for( Size i = 0; i != DIM; ++i)
result[i] = sin( v[i]);
return result;
}
template <typename T, Size DIM>
inline void sincos( const Vector< T, DIM>& a, Vector< T, DIM>& s, Vector< T, DIM>& c)
{
for( Size i = 0; i != DIM; ++i)
sincos( a[i], s[i], c[i]);
}
template <typename T, Size DIM>
inline Vector< T, DIM>
smoothstep(
const Vector< T, DIM>& a,
const Vector< T, DIM>& b,
const Vector< T, DIM>& v)
{
Vector< T, DIM> result;
for( Size i = 0; i != DIM; ++i)
result[i] = smoothstep( a[i], b[i], v[i]);
return result;
}
template <typename T, Size DIM>
inline Vector< T, DIM>
smoothstep(
const Vector< T, DIM>& a,
const Vector< T, DIM>& b,
T x)
{
Vector< T, DIM> result;
for( Size i = 0; i != DIM; ++i)
result[i] = smoothstep( a[i], b[i], x);
return result;
}
template <typename T, Size DIM>
inline Vector< T, DIM>
sqrt( const Vector< T, DIM>& v)
{
Vector< T, DIM> result;
for( Size i = 0; i != DIM; ++i)
result[i] = sqrt( v[i]);
return result;
}
template <typename T, Size DIM>
inline Vector< T, DIM>
step( const Vector< T, DIM>& a, const Vector< T, DIM>& v)
{
Vector< T, DIM> result;
for( Size i = 0; i != DIM; ++i)
result[i] = step( a[i], v[i]);
return result;
}
template <typename T, Size DIM>
inline Vector< T, DIM>
tan( const Vector< T, DIM>& v)
{
Vector< T, DIM> result;
for( Size i = 0; i != DIM; ++i)
result[i] = tan( v[i]);
return result;
}
//------ Geometric Vector Algorithms ------------------------------------------
template <typename T>
inline T cross(
const Vector< T, 2>& lhs,
const Vector< T, 2>& rhs)
{
return lhs.x * rhs.y - lhs.y * rhs.x;
}
template <typename T>
inline Vector< T, 3>
cross(
const Vector< T, 3>& lhs,
const Vector< T, 3>& rhs)
{
return Vector< T, 3>( lhs.y * rhs.z - lhs.z * rhs.y,
lhs.z * rhs.x - lhs.x * rhs.z,
lhs.x * rhs.y - lhs.y * rhs.x);
}
template <typename T>
inline void make_basis(
const Vector< T, 3>& n,
Vector< T, 3>* u,
Vector< T, 3>* v)
{
#ifdef mi_base_assert_enabled
const T eps = 1e-6f; // smallest resolvable factor
#endif
mi_math_assert_msg( u != 0, "precondition");
mi_math_assert_msg( v != 0, "precondition");
// Sanity check: the normal vector must be unit length.
mi_math_assert_msg( abs( length(n) - 1.0f) < eps, "precondition");
// Compute u.
if( abs(n.x) < abs(n.y)) {
// u = cross(x, n), x = (1, 0, 0)
u->x = T(0);
u->y = -n.z;
u->z = n.y;
} else {
// u = cross(y, n), y = (0, 1, 0)
u->x = n.z;
u->y = T(0);
u->z = -n.x;
}
u->normalize();
// Compute v. Since *u and n are orthogonal and unit-length,
// there is no need to normalize *v.
*v = cross( *u, n);
// Sanity check: make sure (u, n, v) is an orthogonal basis.
mi_math_assert_msg( abs( dot( *u, n)) < eps, "postcondition");
mi_math_assert_msg( abs( dot( *u, *v)) < eps, "postcondition");
mi_math_assert_msg( abs( dot( n, *v)) < eps, "postcondition");
// Sanity check: make sure u and v are unit length.
mi_math_assert_msg( abs( length( *u) - T(1)) < eps, "postcondition");
mi_math_assert_msg( abs( length( *v) - T(1)) < eps, "postcondition");
}
template <typename T>
inline void make_basis(
const Vector< T, 3>& n,
const Vector< T, 3>& u,
const Vector< T, 3>& v,
Vector< T, 3>* t,
Vector< T, 3>* b)
{
const T eps = 1e-6f; // smallest resolvable factor
(void)eps;
mi_math_assert_msg( t != 0, "precondition");
mi_math_assert_msg( b != 0, "precondition");
// Sanity check: the normal vector must be unit length.
mi_math_assert_msg( abs( length( n) - 1.0f) < eps, "precondition");
// Sanity check: the other vector lengths should be finite and non-zero
mi_math_assert_msg( length( u) > 0., "precondition");
mi_math_assert_msg( length( v) > 0., "precondition");
mi_math_assert_msg( isfinite( length( u)), "precondition");
mi_math_assert_msg( isfinite( length( v)), "precondition");
// Compute b
*b = cross(u,n);
b->normalize();
// Compute t. Since *b and n are orthogonal and unit-length,
// there is no need to normalize *t.
*t = cross(n,*b);
// Check that b has the same orientation of v
if( dot( *b,v) < T(0))
*b = -*b;
// Sanity check: make sure *u and t have the same orientation.
mi_math_assert_msg( dot( u, *t) > T(0), "postcondition");
// Sanity check: make sure (t, n, b) is an orthogonal basis.
// We use a scaled epsilon in order to avoid false positives.
mi_math_assert_msg( abs( dot( *t, n)) < 20*eps, "postcondition");
mi_math_assert_msg( abs( dot( *t, *b)) < 20*eps, "postcondition");
mi_math_assert_msg( abs( dot( n, *b)) < 20*eps, "postcondition");
// Sanity check: make sure t and b are unit length.
mi_math_assert_msg( abs( length( *t) - T(1)) < eps, "postcondition");
mi_math_assert_msg( abs( length( *b) - T(1)) < eps, "postcondition");
}
template <typename T2, Size DIM2, typename T1, Size DIM1>
inline Vector< T2, DIM2>
convert_vector(
const Vector< T1, DIM1>& v,
const T2& fill = T2(0))
{
const Size dim_min = base::min MI_PREVENT_MACRO_EXPAND ( DIM1, DIM2 );
Vector< T2, DIM2> result;
for( Size i = 0; i < dim_min; ++i)
result[i] = T2(v[i]);
for( Size i = dim_min; i < DIM2; ++i)
result[i] = fill;
return result;
}
// end group mi_math_vector
} // namespace math
} // namespace mi
#endif // MI_MATH_VECTOR_H
Namespaces
- namespace
- Common namespace for APIs of NVIDIA Advanced Rendering Center GmbH. More...
- namespace
- Namespace for the Math API. More...
Classes
- struct
- Generic storage class template for an RGBA color representation storing four floating points elements. More...
- class
- Fixed-size math vector class template with generic operations. More...
- struct
- Specialization for dimension 1 to create x member. More...
- struct
- Specialization for dimension 2 to create x and y member. More...
- struct
- Specialization for dimension 3 to create x, y, and z members. More...
- struct
- Specialization for dimension 4 to create x, y, z, and w members. More...
- struct
- Generic storage class template for math vector representations storing DIM elements of type T. More...
Enumerations
- enum {FROM_ITERATOR }
- Enum used for initializing a vector from an iterator. More...
Functions
- template< typename T, Size> Vector < T , DIM > ( const Vector < T , DIM >& v)
- Returns a vector with the elementwise absolute values of the vector v. More...
- template< typename T, Size> Vector < T , DIM > ( const Vector < T , DIM >& v)
- Returns a vector with the elementwise arc cosine of the vector v. More...
- template< typename T, Size>bool ( const Vector < T , DIM >& v)
- Returns true if all of all elements of v returns true. More...
- template< typename T, Size>bool ( const Vector < T , DIM >& v)
- Returns true if any of any element of v returns true. More...
- template< typename T, Size> Vector < T , DIM > ( const Vector < T , DIM >& v)
- Returns a vector with the elementwise arc sine of the vector v. More...
- template< typename T, Size> Vector < T , DIM > ( const Vector < T , DIM >& v)
- Returns a vector with the elementwise arc tangent of the vector v. More...
- template< typename T, Size> Vector < T , DIM > ( const Vector < T , DIM >& v, const Vector < T , DIM >& w)
- Returns a vector with the elementwise arc tangent of the vector v / w. More...
- template< typename T, Size> Vector < T , DIM > ( const Vector < T , DIM >& v)
- Returns a vector with the elementwise smallest integral value that is not less than the element in vector v. More...
- template< typename T, Size> Vector < T , DIM > ( const Vector < T , DIM >& v, const Vector < T , DIM >& low, const Vector < T , DIM >& high)
- Returns the vector v elementwise clamped to the range [low, high]. More...
- template< typename T, Size> Vector < T , DIM > ( const Vector < T , DIM >& v, const Vector < T , DIM >& low, T high)
- Returns the vector v elementwise clamped to the range [low, high]. More...
- template< typename T, Size> Vector < T , DIM > ( const Vector < T , DIM >& v, T low, const Vector < T , DIM >& high)
- Returns the vector v elementwise clamped to the range [low, high]. More...
- template< typename T, Size> Vector < T , DIM > ( const Vector < T , DIM >& v, T low, T high)
- Returns the vector v elementwise clamped to the range [low, high]. More...
- template< typename T2, Size, typename T1, Size> Vector < T2 , DIM2 > ( const Vector < T1 , DIM1 >& v, const T2& fill = T2(0))
- Converts the vector v of type Vector<T1, DIM1> to a vector of type Vector<T2, DIM2>. More...
- template< typename T, Size> Vector < T , DIM > ( const Vector < T , DIM >& v)
- Returns a vector with the elementwise cosine of the vector v. More...
- template< typename T>T ( const Vector < T , 2 >& lhs, const Vector < T , 2 >& rhs)
- Returns the two-times-two determinant result for the two vectors lhs and rhs. More...
- template< typename T> Vector < T , 3 > ( const Vector < T , 3 >& lhs, const Vector < T , 3 >& rhs)
- Returns the three-dimensional cross product result for the two vectors lhs and rhs. More...
- template< typename T, Size> Vector < T , DIM > ( const Vector < T , DIM >& v)
- Converts elementwise radians in v to degrees. More...
- template< typename T, Size> Vector < bool , DIM > ( const Vector < T , DIM >& lhs, const Vector < T , DIM >& rhs)
- Returns the boolean vector result of an elementwise equality comparison. More...
- template< typename T, Size> Vector < bool , DIM > ( const Vector < T , DIM >& lhs, const Vector < T , DIM >& rhs)
- Returns the boolean vector result of an elementwise greater-than comparison. More...
- template< typename T, Size> Vector < bool , DIM > ( const Vector < T , DIM >& lhs, const Vector < T , DIM >& rhs)
- Returns the boolean vector result of an elementwise greater-than-or-equal comparison. More...
- template< typename T, Size> Vector < bool , DIM > ( const Vector < T , DIM >& lhs, const Vector < T , DIM >& rhs)
- Returns the boolean vector result of an elementwise less-than comparison. More...
- template< typename T, Size> Vector < bool , DIM > ( const Vector < T , DIM >& lhs, const Vector < T , DIM >& rhs)
- Returns the boolean vector result of an elementwise less-than-or-equal comparison. More...
- template< typename T, Size> Vector < bool , DIM > ( const Vector < T , DIM >& lhs, const Vector < T , DIM >& rhs)
- Returns the boolean vector result of an elementwise inequality comparison. More...
- template< typename T, Size> Vector < T , DIM > ( const Vector < T , DIM >& lhs, const Vector < T , DIM >& rhs)
- Returns elementwise maximum of two vectors. More...
- template< typename T, Size> Vector < T , DIM > ( const Vector < T , DIM >& lhs, const Vector < T , DIM >& rhs)
- Returns elementwise minimum of two vectors. More...
- template< typename T, Size> Vector < T , DIM > ( const Vector < T , DIM >& v)
- Returns a vector with elementwise e to the power of the element in the vector v. More...
- template< typename T, Size> Vector < T , DIM > ( const Vector < T , DIM >& v)
- Returns a vector with elementwise 2 to the power of the element in the vector v. More...
- template< typename T, Size> Vector < T , DIM > ( const Vector < T , DIM >& v)
- Returns a vector with the elementwise largest integral value that is not greater than the element in vector v. More...
- template< typename T, Size> Vector < T , DIM > ( const Vector < T , DIM >& a, const Vector < T , DIM >& b)
- Returns elementwise a modulo b, in other words, the remainder of a/b. More...
- template< typename T, Size> Vector < T , DIM > ( const Vector < T , DIM >& a, T b)
- Returns elementwise a modulo b, in other words, the remainder of a/b. More...
- template< typename T, Size> Vector < T , DIM > ( const Vector < T , DIM >& v)
- Returns a vector with the elementwise positive fractional part of the vector v. More...
- template< typename T, Size>bool ( const Vector < T , DIM >& left, const Vector < T , DIM >& right, T e)
- Compares the two given values elementwise for equality within the given epsilon. More...
- template< typename T, Size> Vector < T , DIM > ( const Vector < T , DIM >& v1, const Vector < T , DIM >& v2, const Vector < T , DIM >& t)
- Returns the elementwise linear interpolation between v1 and v2, i.e., it returns (1-t) * v1 + t * v2. More...
- template< typename T, Size> Vector < T , DIM > ( const Vector < T , DIM >& v1, const Vector < T , DIM >& v2, T t)
- Returns the linear interpolation between v1 and v2, i.e., it returns (1-t) * v1 + t * v2. More...
- template< typename T, Size> Vector < T , DIM > ( const Vector < T , DIM >& v)
- Returns a vector with the elementwise natural logarithm of the vector v. More...
- template< typename T, Size> Vector < T , DIM > ( const Vector < T , DIM >& v)
- Returns a vector with the elementwise base 10 logarithm of the vector v. More...
- template< typename T, Size> Vector < T , DIM > ( const Vector < T , DIM >& v)
- Returns a vector with the elementwise base 2 logarithm of the vector v. More...
- template< typename T>void ( const Vector < T , 3 >& n, Vector < T , 3 >* u, Vector < T , 3 >* v)
- Computes a basis of 3D space with one given vector. More...
- template< typename T>void ( const Vector < T , 3 >& n, const Vector < T , 3 >& u, const Vector < T , 3 >& v, Vector < T , 3 >* t, Vector < T , 3 >* b)
- Computes a basis of 3D space with one given vector, plane, and direction. More...
- template< typename T, Size> Vector < T , DIM > ( const Vector < T , DIM >& v, Vector < T , DIM >& i)
- Returns the elementwise fractional part of v and stores the elementwise integral part of v in i. More...
- template< Size> Vector < bool , DIM > ( const Vector < bool , DIM >& vec)
- Returns the elementwise logical not of a boolean vector. More...
- template< typename T, Size> Vector < T , DIM > ( const Vector < T , DIM >& lhs, const Vector < T , DIM >& rhs)
- Computes lhs modulo rhs elementwise and returns the new result. More...
- template< typename T, typename TT, Size> Vector < T , DIM > ( const Vector < T , DIM >& v, TT s)
- Computes v modulo s elementwise and returns the new result. More...
- template< typename T, Size> Vector < T , DIM >& ( Vector < T , DIM >& lhs, const Vector < T , DIM >& rhs)
- Computes lhs modulo rhs elementwise and returns the modified lhs. More...
- template< typename T, typename TT, Size> Vector < T , DIM >& ( Vector < T , DIM >& v, TT s)
- Computes v modulo s elementwise and returns the modified vector v. More...
- template< Size> Vector < bool , DIM > ( const Vector < bool , DIM >& lhs, const Vector < bool , DIM >& rhs)
- Returns the elementwise logical and of two boolean vectors. More...
- template< Size> Vector < bool , DIM > ( bool lhs, const Vector < bool , DIM >& rhs)
- Returns the elementwise logical and of a bool and a boolean vector. More...
- template< Size> Vector < bool , DIM > ( const Vector < bool , DIM >& lhs, bool rhs)
- Returns the elementwise logical and of a boolean vector and a bool. More...
- template< typename T, Size> Vector < T , DIM > ( const Vector < T , DIM >& lhs, const Vector < T , DIM >& rhs)
- Multiplies rhs elementwise with lhs and returns the new result. More...
- template< typename T, typename TT, Size> Vector < T , DIM > ( const Vector < T , DIM >& v, TT s)
- Multiplies the vector v elementwise with the scalar s and returns the new result. More...
- template< typename T, typename TT, Size> Vector < T , DIM > ( TT s, const Vector < T , DIM >& v)
- Multiplies the vector v elementwise with the scalar s and returns the new result. More...
- template< typename T, Size> Vector < T , DIM >& ( Vector < T , DIM >& lhs, const Vector < T , DIM >& rhs)
- Multiplies rhs elementwise with lhs and returns the modified lhs. More...
- template< typename T, typename TT, Size> Vector < T , DIM >& ( Vector < T , DIM >& v, TT s)
- Multiplies the vector v elementwise with the scalar s and returns the modified vector v. More...
- template< typename T, Size> Vector < T , DIM > ( const Vector < T , DIM >& lhs, const Vector < T , DIM >& rhs)
- Adds lhs and rhs elementwise and returns the new result. More...
- template< typename T, Size> Vector < T , DIM >& ( Vector < T , DIM >& vec)
- Pre-increments all elements of vec and returns the result. Modifies vec. More...
- template< typename T, Size> Vector < T , DIM >& ( Vector < T , DIM >& lhs, const Vector < T , DIM >& rhs)
- Adds rhs elementwise to lhs and returns the modified lhs. More...
- template< typename T, Size> Vector < T , DIM > ( const Vector < T , DIM >& lhs, const Vector < T , DIM >& rhs)
- Subtracts rhs elementwise from lhs and returns the new result. More...
- template< typename T, Size> Vector < T , DIM > ( const Vector < T , DIM >& v)
- Negates the vector v elementwise and returns the new result. More...
- template< typename T, Size> Vector < T , DIM >& ( Vector < T , DIM >& vec)
- Pre-decrements all elements of vec and returns the result. Modifies vec. More...
- template< typename T, Size> Vector < T , DIM >& ( Vector < T , DIM >& lhs, const Vector < T , DIM >& rhs)
- Subtracts rhs elementwise from lhs and returns the modified lhs. More...
- template< typename T, typename U, Size> Vector < T , DIM > ( const Vector < T , DIM >& lhs, const Vector < U , DIM >& rhs)
- Divides rhs elementwise by lhs and returns the new result. More...
- template< typename T, typename TT, Size> Vector < T , DIM > ( const Vector < T , DIM >& v, TT s)
- Divides the vector v elementwise by the scalar s and returns the new result. More...
- template< typename T, typename U, Size> Vector < T , DIM >& ( Vector < T , DIM >& lhs, const Vector < U , DIM >& rhs)
- Divides lhs elementwise by rhs and returns the modified lhs. More...
- template< typename T, typename TT, Size> Vector < T , DIM >& ( Vector < T , DIM >& v, TT s)
- Divides the vector v elementwise by the scalar s and returns the modified vector v. More...
- template< Size> Vector < bool , DIM > ( const Vector < bool , DIM >& lhs, const Vector < bool , DIM >& rhs)
- Returns the elementwise logical xor of two boolean vectors. More...
- template< Size> Vector < bool , DIM > ( bool lhs, const Vector < bool , DIM >& rhs)
- Returns the elementwise logical xor of a bool and a boolean vector. More...
- template< Size> Vector < bool , DIM > ( const Vector < bool , DIM >& lhs, bool rhs)
- Returns the elementwise logical xor of a boolean vector and a bool. More...
- template< Size> Vector < bool , DIM > ( const Vector < bool , DIM >& lhs, const Vector < bool , DIM >& rhs)
- Returns the elementwise logical or of two boolean vectors. More...
- template< Size> Vector < bool , DIM > ( bool lhs, const Vector < bool , DIM >& rhs)
- Returns the elementwise logical or of a bool and a boolean vector. More...
- template< Size> Vector < bool , DIM > ( const Vector < bool , DIM >& lhs, bool rhs)
- Returns the elementwise logical or of a boolean vector and a bool. More...
- template< typename T, Size> Vector < T , DIM > ( const Vector < T , DIM >& a, const Vector < T , DIM >& b)
- Returns the vector a elementwise to the power of b. More...
- template< typename T, Size> Vector < T , DIM > ( const Vector < T , DIM >& a, T b)
- Returns the vector a elementwise to the power of b. More...
- template< typename T, Size> Vector < T , DIM > ( const Vector < T , DIM >& v)
- Converts elementwise degrees in v to radians. More...
- template< typename T, Size> Vector < T , DIM > ( const Vector < T , DIM >& v)
- Returns a vector with the elements of vector v rounded to nearest integers. More...
- template< typename T, Size> Vector < T , DIM > ( const Vector < T , DIM >& v)
- Returns the reciprocal of the square root of each element of v. More...
- template< typename T, Size> Vector < T , DIM > ( const Vector < T , DIM >& v)
- Returns the vector v clamped elementwise to the range [0,1]. More...
- template< typename T, Size> Vector < T , DIM > ( const Vector < T , DIM >& v)
- Returns the elementwise sign of vector v. More...
- template< typename T, Size> Vector < T , DIM > ( const Vector < T , DIM >& v)
- Returns a vector with the elementwise sine of the vector v. More...
- template< typename T, Size>void ( const Vector < T , DIM >& a, Vector < T , DIM >& s, Vector < T , DIM >& c)
- Computes elementwise the sine s and cosine c of angles a simultaneously. More...
- template< typename T, Size> Vector < T , DIM > ( const Vector < T , DIM >& a, const Vector < T , DIM >& b, const Vector < T , DIM >& v)
- Returns 0 if v is less than a and 1 if v is greater than b in an elementwise fashion. More...
- template< typename T, Size> Vector < T , DIM > ( const Vector < T , DIM >& a, const Vector < T , DIM >& b, T x)
- Returns 0 if x is less than a and 1 if x is greater than b in an elementwise fashion. More...
- template< typename T, Size> Vector < T , DIM > ( const Vector < T , DIM >& v)
- Returns the square root of each element of v. More...
- template< typename T, Size> Vector < T , DIM > ( const Vector < T , DIM >& a, const Vector < T , DIM >& v)
- Returns elementwise 0 if v is less than a and 1 otherwise. More...
- template< typename T, Size> Vector < T , DIM > ( const Vector < T , DIM >& v)
- Returns a vector with the elementwise tangent of the vector v. More...
- template< typename T, Size>T* ( Vector_struct < T , DIM >& vec)
- Returns the base pointer to the vector data. More...
- template< typename T, Size>const T* ( const Vector_struct < T , DIM >& vec)
- Returns the base pointer to the vector data. More...
- template< typename T>T* ( Vector_struct < T , 1 >& vec)
- Returns the base pointer to the vector data, specialization for DIM==1. More...
- template< typename T>const T* ( const Vector_struct < T , 1 >& vec)
- Returns the base pointer to the vector data, specialization for DIM==1. More...
- template< typename T>T* ( Vector_struct < T , 2 >& vec)
- Returns the base pointer to the vector data, specialization for DIM==2. More...
- template< typename T>const T* ( const Vector_struct < T , 2 >& vec)
- Returns the base pointer to the vector data, specialization for DIM==2. More...
- template< typename T>T* ( Vector_struct < T , 3 >& vec)
- Returns the base pointer to the vector data, specialization for DIM==3. More...
- template< typename T>const T* ( const Vector_struct < T , 3 >& vec)
- Returns the base pointer to the vector data, specialization for DIM==3. More...
- template< typename T>T* ( Vector_struct < T , 4 >& vec)
- Returns the base pointer to the vector data, specialization for DIM==4. More...
- template< typename T>const T* ( const Vector_struct < T , 4 >& vec)
- Returns the base pointer to the vector data, specialization for DIM==4. More...